Advertisement

Constraints

, Volume 15, Issue 4, pp 516–539 | Cite as

Enabling local computation for partially ordered preferences

  • Hélène Fargier
  • Emma Rollon
  • Nic Wilson
Article

Abstract

Many computational problems linked to uncertainty and preference management can be expressed in terms of computing the marginal(s) of a combination of a collection of valuation functions. Shenoy and Shafer showed how such a computation can be performed using a local computation scheme. A major strength of this work is that it is based on an algebraic description: what is proved is the correctness of the local computation algorithm under a few axioms on the algebraic structure. The instantiations of the framework in practice make use of totally ordered scales. The present paper focuses on the use of partially ordered scales and examines how such scales can be cast in the Shafer–Shenoy framework and thus benefit from local computation algorithms. It also provides several examples of such scales, thus showing that each of the algebraic structures explored here is of interest.

Keywords

Soft constraints Dynamic programming Local computation Valuation networks/algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benferhat, S., Lagrue, S., & Papini, O. (2005). Revision of partially ordered information: Axiomatization, semantics and iteration. In IJCAI’05, proceedings of the nineteenth international joint conference on artificial intelligence (pp. 376–381).Google Scholar
  2. 2.
    Bistarelli, S., Montanari, U., & Rossi, F. (1995). Constraint solving over semirings. In IJCAI’95 (pp. 624–630).Google Scholar
  3. 3.
    Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint satisfaction and optimization. Journal of the ACM, 44(2), 201–236.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004). CP-nets: A tool for representing and reasoning with conditional ceteris paribus statements. Journal of Artificial Intelligence Research, 21, 135–191.MATHMathSciNetGoogle Scholar
  5. 5.
    Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. In IJCAI’89 (pp. 1043–1048).Google Scholar
  6. 6.
    Dubois, D., & Fargier, H. (2006). Qualitative decision making with bipolar information. In KR’06 (pp. 175–186).Google Scholar
  7. 7.
    Dubois, D., Lang, J., & Prade, H. (1991). Timed possibilistic logic. Fundamenta Informaticae, 15(3–4), 211–234.MATHMathSciNetGoogle Scholar
  8. 8.
    Dubus, J.-P., Gonzales, C., & Perny, P. (2009). Multiobjective optimization using GAI models. In IJCAI’09 (pp. 1902–1907).Google Scholar
  9. 9.
    Fargier, H., & Wilson, N. (2009). Local computation schemes with partially ordered preferences. In ECSQARU’09 (pp. 34–45).Google Scholar
  10. 10.
    Freuder, E., & Wallace, R. (1992). Partial constraint satisfaction. Artificial Intelligence, 58(1–3), 21–70.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Friedman, N., & Halpern, J. (1996). Plausibility measures and default reasoning. In AAAI’96 (pp. 1297–1304).Google Scholar
  12. 12.
    Giunchiglia, E., & Maratea, M. (2007). Planning as satisfiability with preferences. In AAAI’07 (pp. 987–992).Google Scholar
  13. 13.
    Henig, M. I. (1985). The shortest path problem with two objective functions. European Journal of Operational Research, 25, 281–291.CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kohlas, J. (2003). Information algebras: Generic structures for inference. New York: Springer (2003).MATHGoogle Scholar
  15. 15.
    Kohlas, J., & Wilson, N. (2008). Semiring induced valuation algebras: Exact and approximate local computation algorithms. Artificial Intelligence, 172, 1360–1399.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lindström, S., & Rabinowicz, W. (1989). Epistemic entrenchment with incomparabilities and relational belief revision. In The logic of theory change, workshop, Konstanz, FRG, 13–15 October 1989. Proceedings (pp. 93–126).Google Scholar
  17. 17.
    Papadimitriou, C. H., & Yannakakis, M. (2000). On the approximability of trade-offs and optimal access of web sources (extended abstract). In FOCS’00 (pp. 86–92).Google Scholar
  18. 18.
    Rollon, E. (2008). Multi-objective optimization for graphical models. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  19. 19.
    Rollon, E., & Larrosa, J. (2006). Bucket elimination for multiobjective optimization problems. Journal of Heuristics, 12(4–5), 307–328.MATHCrossRefGoogle Scholar
  20. 20.
    Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31(1), 49–73.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy problems. In IJCAI’95 (pp. 631–637). Montreal.Google Scholar
  22. 22.
    Shenoy, P. P. (1990). Valuation-based systems for discrete optimisation. In UAI’90 (pp. 385–400).Google Scholar
  23. 23.
    Shenoy, P. P., & Shafer, G. (1988). Axioms for probability and belief-function propagation. In UAI’88 (pp. 169–198).Google Scholar
  24. 24.
    Wilson, N. (1995). An order of magnitude calculus. In UAI’95 (pp. 548–555).Google Scholar
  25. 25.
    Wilson, N. (2006). A logic of soft constraints based on partially ordered preferences. Journal of Heuristics, 12(4–5), 241–262.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.IRITToulouse CedexFrance
  2. 2.Technical University of CataloniaBarcelonaSpain
  3. 3.Cork Constraint Computation Centre, Department of Computer ScienceUniversity College CorkCorkIreland

Personalised recommendations