Constraints

, Volume 15, Issue 2, pp 151–189 | Cite as

A hybrid model for a multiproduct pipeline planning and scheduling problem

  • Tony Minoru Tamura Lopes
  • Andre Augusto Ciré
  • Cid Carvalho de Souza
  • Arnaldo Vieira Moura
Article

Abstract

Brazilian petrobras is one of the world largest oil companies. Recurrently, it faces a very difficult planning and scheduling problem: how to operate a large pipeline network in order to adequately transport oil derivatives and biofuels from refineries to local markets. In spite of being more economical and environmentally safer, the use of a complex pipeline network poses serious operational difficulties related to resource allocation and temporal constraints. The current approaches known from the literature only consider a few types of constraints and restricted topologies, hence they are far from being applicable to real instances from petrobras. We propose a hybrid framework based on a two-phase problem decomposition strategy. A novel Constraint Programming (CP) model plays a key role in modelling operational constraints that are usually overlooked in literature, but that are essential in order to guarantee viable solutions. The full strategy was implemented and produced very adequate results when tested over large real instances.

Keywords

Constraints Scheduling Oil pipeline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    5th International Planning Competition (2006). http://zeus.ing.unibs.it/ipc-5/.
  2. 2.
    Alves, V., & Filho, V. J. (2007). Pipeline scheduling of petroleum derivatives using genetic algorithm. In IV Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás. Campinas, Brazil.Google Scholar
  3. 3.
    Cafaro, D. C., & Cerdá, J. (2004). Optimal scheduling of multiproduct pipeline systems using a non-discrete MILP formulation. Computers & Chemical Engineering, 28(10), 2053–2058.CrossRefGoogle Scholar
  4. 4.
    Camponogara, E. (1995). A-Teams para um problema de transporte de derivados de petróleo. Master’s thesis, Instituto de Matemática, Estatística e Ciência da Computação, Universidade Estadual de Campinas, Campinas, Brazil. In Portuguese.Google Scholar
  5. 5.
    Camponogara, E., & Souza, P. S. (1996). A-Teams for oil transportation problem through pipelines. In Information systems analysis and synthesis. Orlando, United States.Google Scholar
  6. 6.
    Cheng, B. M. W., Choi, K. M. F., Lee, J. H. M., & Wu, J. C. K. (1999). Increasing constraint propagation by redundant modeling: An experience report. Constraints, 4(2), 167–192. citeseer.ist.psu.edu/cheng99increasing.html.MATHCrossRefGoogle Scholar
  7. 7.
    Crane, D. S., Wainwright, R. L., & Schoenefeld, D. A. (1999). Scheduling of multi-product fungible liquid pipelines using genetic algorithms. In Proceedings of the 1999 ACM symposium on applied computing (pp. 280–285). San Antonio, USA.Google Scholar
  8. 8.
    de la Cruz, J., Andrés-Toro, B., Herrán-González, A., Porta, E. B., & Blanco, P.F. (2003). Multiobjective optimization of the transport in oil pipelines networks. In Proceedings of the IEEE conference on emerging technologies and factory automation (Vol. 1, pp. 566–573).Google Scholar
  9. 9.
    de la Cruz, J., Herrán-González, A., Risco-Martín, J., & Andrés-Toro, B. (2005). Hybrid heuristic and mathematical programming in oil pipelines networks: Use of immigrants. Journal of Zhejiang University Science, 6A(1), 9–19.CrossRefGoogle Scholar
  10. 10.
    Filho, E. M. S., Filho, V. J., & de Lima, L. S. (2007). Variable neighborhood search (VNS) applied to pipeline distribution problem with capacity constraints. In IV Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás. Campinas, Brazil.Google Scholar
  11. 11.
    Group, A. E. (2001). How pipelines make the oil market work—their networks, operation and regulation. New York: Association of Oil Pipe Lines.Google Scholar
  12. 12.
    Hooker, J. N. (2006). Integrated methods for optimization (International series in operations research & management science). Secaucus: Springer.Google Scholar
  13. 13.
    ILOG (2006). ILOG scheduler 6.2: User’s manual. ILOG.Google Scholar
  14. 14.
    Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., & Selman, B. (2002). Dynamic restarts policies. In Proceedings of the AAAI-2002. Edmonton, Alberta.Google Scholar
  15. 15.
    Magatao, L., Arruda, L., & Neves, F. (2004). A mixed integer programming approach for scheduling commodities in a pipeline. Computers & Chemical Engineering, 28(1), 171–185.CrossRefGoogle Scholar
  16. 16.
    Magatao, L., Arruda, L., & Neves, F. (2005). Using CLP and MILP for scheduling commodities in a pipeline. Computer-Aided Chemical Engineering, 20B, 1027–1032.CrossRefGoogle Scholar
  17. 17.
    Marriot, K., & Stuckey, P. (1998). Programming with constraints: An introduction (1st ed.). Cambridge: MIT.Google Scholar
  18. 18.
    Milidíu, R., & dos Santos Liporace, F. (2003). Planning of pipeline oil transportation with interface restrictions is a difficult problem. Tech. rep. 56, Departamento de Informática, PUC-Rio, Rio de Janeiro, RJ, Brasil.Google Scholar
  19. 19.
    Milidíu, R., dos Santos Liporace, F., & de Lucena, C. J. P. (2003). Pipesworld: Planning pipeline transportation of petroleum derivatives. In Proceedings of ICAPS’03—Workshop on the competition: Impact, organization, evaluation, benchmarks. Trento, Italy.Google Scholar
  20. 20.
    Milidiú, R. L., Pessoa, A. A., & Laber, E. S. (2002). Pipeline transportation of petroleum products with no due dates. In LATIN ’02: Proc. of the 5th Latin American symposium on theoretical informatics (pp. 248–262). London: Springer.CrossRefGoogle Scholar
  21. 21.
    Milidiú, R. L., Pessoa, A. A., & Laber, E. S. (2003). The complexity of makespan minimization for pipeline transportation. Theoretical Computer Science, 306(1–3), 339–351. doi:10.1016/S0304-3975(03)00291-3.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Moura, A., de Souza, C., Cire, A., & Lopes, T. (2008). Heuristics and constraint programming hybridizations for a real pipeline planning and scheduling problem. In Proceedings of the 11th IEEE international conference on computational science and engineering—CSE’08 (pp. 455–462).Google Scholar
  23. 23.
    Moura, A., de Souza, C., Cire, A., & Lopes, T. (2008). Planning and scheduling the operation of a very large oil pipeline network. In Lecture notes in computer science—proceedings of the 14th international conference on principles and practice of constraint programming (Vol. 5202, pp. 36–51).Google Scholar
  24. 24.
    Rejowski, R., & Pinto, J. M. (2003). Scheduling of a multiproduct pipeline system. Computers & Chemical Engineering, 27(8), 1229–1246.CrossRefGoogle Scholar
  25. 25.
    Rejowski, R., & Pinto, J. M. (2004). Efficient MILP formulations and valid cuts for multiproduct pipeline scheduling. Computers & Chemical Engineering, 28(8), 1511–1528.Google Scholar
  26. 26.
    Rejowski, R., & Pinto, J. M. (2008). A novel continuous time representation for the scheduling of pipeline systems with pumping yield rate constraints. Computers & Chemical Engineering, 32, 1042–1066.CrossRefGoogle Scholar
  27. 27.
    Relvas, S., Barbosa-Póvoa, A. P. F. D., Matos, H. A., Fialho, J., & Pinheiro, A. S. (2006). Pipeline scheduling and distribution centre management—A real-world scenario at CLC. In Proceedings of the 16th European symposium on computer aided process engineering and 9th international symposium on process systems engineering (pp. 2135–2140). Garmisch-Partenkirchen, Germany.Google Scholar
  28. 28.
    Relvas, S., Matos, H. A., Barbosa-Póvoa, A. P. F. D., Fialho, J., & Pinheiro, A. S. (2006). Pipeline scheduling and inventory management of a multiproduct distribution oil system. Industrial & Engineering Chemistry Research, 45(23), 7841–7855.CrossRefGoogle Scholar
  29. 29.
    Relvas, S., Matos, H. A., Barbosa-Póvoa, A. P. F. D., & Fialho, J. (2007). Reactive scheduling framework for a multiproduct pipeline with inventory management. Industrial & Engineering Chemistry Research, 46(17), 5659–5672.CrossRefGoogle Scholar
  30. 30.
    Sasikumar, M., Prakash, P. R., Patil, S. M., & Ramani, S. (1997). Pipes: A heuristic search model for pipeline schedule generation. Knowledge-Based Systems, 10(3), 169–175.CrossRefGoogle Scholar
  31. 31.
    Wilson, R. (2001). Transportation in America (18th ed.). Washington, D.C.: Eno Transportation Foundation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tony Minoru Tamura Lopes
    • 1
  • Andre Augusto Ciré
    • 1
  • Cid Carvalho de Souza
    • 1
  • Arnaldo Vieira Moura
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations