Advertisement

Constraints

, Volume 16, Issue 1, pp 1–24 | Cite as

Tractable cases of the extended global cardinality constraint

  • Marko Samer
  • Stefan Szeider
Article

Abstract

We study the consistency and domain consistency problem for extended global cardinality (EGC) constraints. An EGC constraint consists of a set X of variables, a set D of values, a domain \(D(x) \subseteq D\) for each variable x, and a “cardinality set” K(d) of non-negative integers for each value d. The problem is to instantiate each variable x with a value in D(x) such that for each value d, the number of variables instantiated with d belongs to the cardinality set K(d). It is known that this problem is NP-complete in general, but solvable in polynomial time if all cardinality sets are intervals. First we pinpoint connections between EGC constraints and general factors in graphs. This allows us to extend the known polynomial-time case to certain non-interval cardinality sets. Second we consider EGC constraints under restrictions in terms of the treewidth of the value graph (the bipartite graph representing variable-value pairs) and the cardinality-width (the largest integer occurring in the cardinality sets). We show that EGC constraints can be solved in polynomial time for instances of bounded treewidth, where the order of the polynomial depends on the treewidth. We show that (subject to the complexity theoretic assumption  FPT ≠ W[1]) this dependency cannot be avoided without imposing additional restrictions. If, however, also the cardinality-width is bounded, this dependency gets removed and EGC constraints can be solved in linear time.

Keywords

Global constraints General factor problem Domain consistency Bounded treewidth Parameterized complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beldiceanu, N., Carlsson, M. & Rampon, J.-X. (2005). Global constraint catalog. Technical Report T2005:08, Swedish Institute of Computer Science, Stockholm, Sweden.Google Scholar
  2. 2.
    Bessiére, C., Hebrard, E., Hnich, B., & Walsh, T. (2004). The tractability of global constraints. In Proceedings of the 10th international conference on principles and practice of constraint programming (CP’04), LNCS (Vol. 3258, pp. 716–720). New York: Springer.Google Scholar
  3. 3.
    Bessiére, C., Hebrard, E., Hnich, B., Kiziltan, Z., Quimper, C.-G., & Walsh, T. (2008). The parameterized complexity of global constraints. In Proceedings of the 23rd AAAI conference on artificial intelligence (AAAI’08) (pp. 235–240). Menlo Park: AAAI.Google Scholar
  4. 4.
    Bodlaender, H. L. (1993). A tourist guide through treewidth. Acta Cybernetica, 11(1–2), 1–22.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H. L. (1996). A linear time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6), 1305–1317.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bodlaender, H. L. (2005). Discovering treewidth. In Proceedings of the 31st conference on current trends in theory and practice of computer science (SOFSEM’05), LNCS (Vol. 3381, pp. 1–16). New York: Springer.Google Scholar
  7. 7.
    Bourdais, S., Galinier, P., & Pesant, G. (2003). HIBISCUS: A constraint programming application to staff scheduling in health care. In Proceedings of the 9th international conference on principles and practice of constraint programming (CP’03), LNCS (Vol. 2833, pp. 153–167). New York: Springer.Google Scholar
  8. 8.
    Caseau, Y., Guillo, P.-Y., & Levenez, E. (1995). A deductive and object-oriented approach to a complex scheduling problem. Journal of Intelligent Information Systems, 4(2), 149–166.CrossRefGoogle Scholar
  9. 9.
    Cohen, D., & Jeavons, P. (2006). The complexity of constraint languages. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (chapter 8, pp. 245–280). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. 10.
    Cornuéjols, G. (1988). General factors of graphs. Journal of Combinatorial Theory, Series B, 45(2), 185–198.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cornuéjols, G., Hartvigsen, D., & Pulleyblank, W. (1982). Packing subgraphs in a graph. Operations Research Letters, 1, 139–143.zbMATHCrossRefGoogle Scholar
  12. 12.
    Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In J. van Leeuwen (Ed.), Handbook of theoretical computer science: Formal models and semantics (Vol. B, chapter 5, pp. 193–242). Amsterdam: Elsevier.Google Scholar
  13. 13.
    Dechter, R. (2006). Tractable structures for constraint satisfaction problems. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (chapter 7, pp. 209–244). Amsterdam: Elsevier.CrossRefGoogle Scholar
  14. 14.
    Downey, R. G., & Fellows, M. R. (1999). Parameterized complexity. New York: Springer.Google Scholar
  15. 15.
    Flum, J., & Grohe, M. (2006). Parameterized complexity theory. New York: Springer.Google Scholar
  16. 16.
    Gottlob, G., & Pichler, R., & Wei, F. (2006). Bounded treewidth as a key to tractability of knowledge representation and reasoning. In Proceedings of the 21st AAAI conference on artificial intelligence (AAAI’06) (pp. 250–256). Menlo Park: AAAI.Google Scholar
  17. 17.
    van Hoeve, W.-J., & Katriel I. (2006). Global constraints. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (chapter 6, pp. 169–208). Amsterdam: Elsevier.Google Scholar
  18. 18.
    Kloks, T. (1994). Treewidth: Computations and approximations. New York: Springer.zbMATHGoogle Scholar
  19. 19.
    Koster, A. M. C. A., Bodlaender, H. L., & van Hoesel, S. P. M. (2001). Treewidth: Computational experiments. Electronic Notes in Discrete Mathematics, 8, 54–57.CrossRefGoogle Scholar
  20. 20.
    Lovász, L. (1970). The factorization of graphs. In Combinatorial structures and their applications (pp. 243–246). New York: Gordon and Breach.Google Scholar
  21. 21.
    Lovász, L. (1972). The factorization of graphs II. Acta Mathematica Academiae Scientiarum Hungaricae, 23, 223–246.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Micali, S., & Vazirani, V. V. (1980). An \({O}(\sqrt{|{V}|}\cdot |{E}|)\) algorithm for finding a maximum matching in general graphs. In Proceedings of the 21st annual IEEE symposium on foundations of computer science (SFCS’80) (pp. 17–27). IEEE Computer Society.Google Scholar
  23. 23.
    Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford: Oxford University Press.zbMATHCrossRefGoogle Scholar
  24. 24.
    Pietrzak, K. (2003). On the parameterized complexity of the fixed alphabet shortest common supersequence and longest common subsequence problems. Journal of Computer and System Sciences, 67(4), 757–771.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Quimper, C.-G., López-Ortiz, A., van Beek, P., & Golynski, A. (2004). Improved algorithms for the global cardinality constraint. In Proceedings of the 10th international conference on principles and practice of constraint programming (CP’04), LNCS (Vol. 3258, pp. 542–556). New York: Springer.Google Scholar
  26. 26.
    Régin, J.-C. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings of the 13th AAAI conference on artificial intelligence (AAAI’96) (pp. 209–215). Menlo Park: AAAI.Google Scholar
  27. 27.
    Régin, J.-C., & Gomes, C. P. (2004). The cardinality matrix constraint. In Proceedings of the 10th international conference on principles and practice of constraint programming (CP’04), LNCS (Vol. 3258, pp. 572–587). New York: Springer.Google Scholar
  28. 28.
    Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of constraint programming. Amsterdam: Elsevier.zbMATHGoogle Scholar
  29. 29.
    Samer, M., & Szeider, S. (2008). Tractable cases of the extended global cardinality constraint. In Proceedings of the 14th computing: The Australasian theory symposium (CATS’08), Theory of Computing 2008, CRPIT (Vol. 77, pp. 67–74). Canberra: Australian Computer Society.Google Scholar
  30. 30.
    Sellmann, M., Gellermann, T., & Wright, R. (2007). Cost-based filtering for shorter path constraints. Constraints, 12(2), 207–238.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DarmstadtDarmstadtGermany
  2. 2.Department of Computer ScienceDurham UniversityDurhamUK

Personalised recommendations