Advertisement

Constraints

, Volume 15, Issue 1, pp 1–28 | Cite as

Lexicographically-ordered constraint satisfaction problems

  • Eugene C. Freuder
  • Robert Heffernan
  • Richard J. Wallace
  • Nic Wilson
Article

Abstract

We describe a simple CSP formalism for handling multi-attribute preference problems with hard constraints, one that combines hard constraints and preferences so the two are easily distinguished conceptually and for purposes of problem solving. Preferences are represented as a lexicographic order over complete assignments based on variable importance and rankings of values in each domain. Feasibility constraints are treated in the usual manner. Since the preference representation is ordinal in character, these problems can be solved with algorithms that do not require evaluations to be represented explicitly. This includes ordinary CSP algorithms, although these cannot stop searching until all solutions have been checked, with the important exception of heuristics that follow the preference order (lexical variable and value ordering). We describe relations between lexicographic CSPs and more general soft constraint formalisms and show how a full lexicographic ordering can be expressed in the latter. We discuss relations with (T)CP-nets, highlighting the advantages of the present formulation, and we discuss the use of lexicographic ordering in multiobjective optimisation. We also consider strengths and limitations of this form of representation with respect to expressiveness and usability. We then show how the simple structure of lexicographic CSPs can support specialised algorithms: a branch and bound algorithm with an implicit cost function, and an iterative algorithm that obtains optimal values for successive variables in the importance ordering, both of which can be combined with appropriate variable ordering heuristics to improve performance. We show experimentally that with these procedures a variety of problems can be solved efficiently, including some for which the basic lexically ordered search is infeasible in practice.

Keywords

Constraint satisfaction Preference Lexicographic order Soft constraint Complete search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K. J., & Raynaud, H. (1986). Social choice and multicriterion decision-making. MIT.Google Scholar
  2. 2.
    Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and optimization. Journal on ACM, 44, 201–236.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints, 4, 199–240.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Borcherding, K., Eppel, T., & von Winterfeldt, D. (1991). Comparison of weighting judgments in multiattribute utility measurement. Management Science, 37, 1603–1619.zbMATHCrossRefGoogle Scholar
  5. 5.
    Borning, A., Freeman-Benson, B., & Wilson, M. (1992) Constraint hierarchies. LISP and Symbolic Computation, 5, 223–270.CrossRefGoogle Scholar
  6. 6.
    Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with conditional ceteris paribus preference statements. In Proc. fifteenth annual conference on uncertainty in artificial intelligence (pp. 71–80). Morgan Kaufmann.Google Scholar
  7. 7.
    Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004a). CP-nets: A tool for representing and reasoning with ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21, 135–191.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004b). Preference-based constrained optimization with CP-nets. Computational Intelligence, Special Issue on Preferences, 20, 137–157.MathSciNetGoogle Scholar
  9. 9.
    Brafman, R. I., & Domshlak, C. (2002). Introducing variable importance tradeoffs into CP-nets. In Proc. eighteenth annual conference on uncertainty in artificial intelligence (pp. 69–76). AAAI Press.Google Scholar
  10. 10.
    Brafman, R. I., Domshlak, C., & Shimony, E. (2006). Graphical modeling of preference and importance. Journal of Artificial Intelligence Research, 25, 389–424.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. In Proc. eleventh international joint conference on artificial intelligence (pp. 1043–1048). Morgan Kaufmann.Google Scholar
  12. 12.
    Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making. Dover.Google Scholar
  13. 13.
    Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In Proc. twelth international joint conference on artificial intelligence (pp. 331–337). Morgan Kaufmann.Google Scholar
  14. 14.
    Domshlak, C., & Brafman, R. I. (2002). CP-nets - reasoning and consistency testing. In Proc. eighth conference on principles of knowledge representation and reasoning (pp. 121–132). Morgan Kaufmann.Google Scholar
  15. 15.
    Doyle, J., & Thomason, R. H. (1999). Background to qualitative decision theory. Artificial Intelligence Magazine, 20, 55–68.Google Scholar
  16. 16.
    Ehrgott, M. (2005). Multicriteria Optimization. 2nd edition. Springer.Google Scholar
  17. 17.
    Ehrgott, M., & Wiecek, M. M. (2005). Multiobjective programming. In J. Figueira, S. Greco, & M. Ehrgott (eds.), Multiple criteria decision analysis. State of the art surveys (pp. 667–722). Springer.Google Scholar
  18. 18.
    Fargier, H., Lang, J., & Schiex, T. (1993). Selecting preferred solutions in fuzzy constraint satisfaction problems. In Proc. first European conference on fuzzy and intelligent technologies - EUFIT’93 (pp. 1128–1134). Augustinus Buchhandlung.Google Scholar
  19. 19.
    Fishburn, P. C. (1970). Utility theory for decision making. Wiley.Google Scholar
  20. 20.
    Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20, 1442–1471zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fishburn, P. C. (1975). Axioms for lexicographic preferences. Review of Economic Studies, 42, 415–419.zbMATHCrossRefGoogle Scholar
  22. 22.
    Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002). Global constraints for lexicographic orderings. In P. V. Hentenryck (ed.), Principles and practice of constraint programming - CP2002, LNCS (vol. 2470, pp. 93–108). Springer.Google Scholar
  23. 23.
    Freuder, E. C., Wallace, R. J., & Heffernan, R. (2003). Ordinal constraint satisfaction. In Fifth international workshop on soft constraints - SOFT’03.Google Scholar
  24. 24.
    Frost, D., & Dechter, R. (1995). Look-ahead value ordering for constraint satisfaction problems. In Proc. fourteenth international joint conference on artificial intelligence (pp. 572–578). Morgan Kaufmann.Google Scholar
  25. 25.
    Gavanelli, M. (2002). An algorithm for multi-criteria optimization in CSPs. In F. van Harmelen (ed.), Fifteenth European conference on artificial intelligence-ECAI 2002 (pp. 136–140). IOS Press.Google Scholar
  26. 26.
    Goldsmith, J., Lang, J., Truszczynski, M., & Wilson, N. (2005). The computational complexity of dominance and consistency in CP-nets. In Proc. nineteenth international joint conference on artificial intelligence (pp. 144–149).Google Scholar
  27. 27.
    Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.CrossRefGoogle Scholar
  28. 28.
    Joseph, R. R., Chan, P., Hiroux, M., & Weil, G. (2007). Decision-support with preference constraints. European Journal of Operational Research, 177, 1469–1494.zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Junker, U. (2002). Preference-based search and multi-criteria optimization. In Proc. eighteenth national conference on artificial intelligence (pp. 34–40). AAAI Press.Google Scholar
  30. 30.
    Junker, U. (2004). Preference-based search and multi-criteria optimization. Annals of Operation Research, 130, 75–115zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Junker, U. (2008). Preference-based problem solving for constraint programming. In F. Fages, F. Rossi, & S. Soliman (eds.), Recent advances in constraints: 12th annual ERCIM international workshop on constraint solving and constraint logic programming - CSCLP 2007. LNAI (vol. 5129, pp. 109–126). Revised selected papers. Springer.Google Scholar
  32. 32.
    Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives. Cambridge.Google Scholar
  33. 33.
    Korhonen, M. (2005). Interactive methods. In J. Figueira, S. Greco, & M. Ehrgott (eds.), Multiple criteria decision analysis. State of the art surveys (pp. 641–665). Springer.Google Scholar
  34. 34.
    Larichev, O. I. (1984). Psychological validation of decision methods. Journal of Applied Systems Analysis, 11, 37–46.Google Scholar
  35. 35.
    Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal on Operational Research, 169, 932–942.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lecoutre, C., Boussemart, F., & Hemery, F. (2004). Backjump-based techniques versus conflict-directed heuristics. In Proc. sixteenth international conference on tools with artificial intelligence-ICTAI’04 (pp. 549–557). IEEE Press.Google Scholar
  37. 37.
    Luce, R. D., & Suppes, P. (1965). Preference, utility and subjective probability. In R. D. Luce, R. R. Bush, & E. Galanter (eds.), Handbook of mathematical psychology (vol. 3, pp. 249–410). Wiley.Google Scholar
  38. 38.
    Majumdar, T. (1966). The measurement of utility. Macmillan.Google Scholar
  39. 39.
    Olson, D. L., Moshkovich, H. M., Schellenberger, R., & Mechitov, A. I. (1995). Consistency and accuracy in decision aids: Experiments with four multiattribute systems. Decision Science, 26, 723–746.CrossRefGoogle Scholar
  40. 40.
    Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge.Google Scholar
  41. 41.
    Plott, C. R., Little, J. T., & Parks, R. P. (1975). Individual choices when objects have “ordinal” properties. Review of Economic Studies, 42, 403–413.zbMATHCrossRefGoogle Scholar
  42. 42.
    Saaty, T. L. (2005). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis (pp. 345–407). Springer.Google Scholar
  43. 43.
    Sabin, D., & Freuder, E. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proc. eleventh European conference on artificial intelligence (pp. 125–129). Wiley.Google Scholar
  44. 44.
    Smith, B. M., & Grant, S. A. (1998). Trying harder to fail first. In Proc. thirteenth European conference on artificial intelligence—ECAI’98 (pp. 249–253). Wiley.Google Scholar
  45. 45.
    Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy problems. In Proc. fourteenth international joint conference on artificial intelligence (pp. 631–637). Morgan Kaufmann.Google Scholar
  46. 46.
    Wallace, R. J., & Wilson, N. (2006). Conditional lexicographic orders in constraint satisfaction problems. In J. C. Beck, & B. M. Smith (eds.), Proc. third international conference on integration of AI and OR techniques in constraint programming - CPAIOR 2006. LNCS (no. 3990, pp. 258–272). Berlin: Springer.Google Scholar
  47. 47.
    Wilson, N. (2004a). Consistency and constrained optimisation for conditional preferences. In Proc. sixteenth European conference on artificial intelligence (pp. 888–892). IOS Press.Google Scholar
  48. 48.
    Wilson, N. (2004b). Extending CP-nets with stronger conditional preference statements. In Proc. nineteenth national conference on artificial intelligence (pp. 735–741). AAAI/MIT.Google Scholar
  49. 49.
    Wilson, N. (2006). An efficient upper approximation for conditional preference. In Proc. seventeenth European conference on artificial intelligence (pp. 472–476). IOS Press.Google Scholar
  50. 50.
    Wallace, R. J., & Wilson, N. (2009). Conditional lexicographic orders in constraint satisfaction problems. Annals of Operations Research special issue entitled “Constraint Programming, Artificial Intelligence and Operations Research”.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eugene C. Freuder
    • 1
  • Robert Heffernan
    • 1
  • Richard J. Wallace
    • 1
  • Nic Wilson
    • 1
  1. 1.Cork Constraint Computation Center and Department of Computer ScienceUniversity College CorkCorkIreland

Personalised recommendations