Constraints

, 14:415 | Cite as

A branch and bound algorithm for extracting smallest minimal unsatisfiable subformulas

  • Mark Liffiton
  • Maher Mneimneh
  • Inês Lynce
  • Zaher Andraus
  • João Marques-Silva
  • Karem Sakallah
Article

Abstract

Explaining the causes of infeasibility of Boolean formulas has practical applications in numerous fields, such as artificial intelligence (repairing inconsistent knowledge bases), formal verification (abstraction refinement and unbounded model checking), and electronic design (diagnosing and correcting infeasibility). Minimal unsatisfiable subformulas (MUSes) provide useful insights into the causes of infeasibility. An unsatisfiable formula often has many MUSes. Based on the application domain, however, MUSes with specific properties might be of interest. In this paper, we tackle the problem of finding a smallest-cardinality MUS (SMUS) of a given formula. An SMUS provides a succinct explanation of infeasibility and is valuable for applications that are heavily affected by the size of the explanation. We present (1) a baseline algorithm for finding an SMUS, founded on earlier work for finding all MUSes, and (2) a new branch-and-bound algorithm called Digger that computes a strong lower bound on the size of an SMUS and splits the problem into more tractable subformulas in a recursive search tree. Using two benchmark suites, we experimentally compare Digger to the baseline algorithm and to an existing incomplete genetic algorithm approach. Digger is shown to be faster in nearly all cases. It is also able to solve far more instances within a given runtime limit than either of the other approaches.

Keywords

Boolean satisfiability SAT Infeasibility Minimal unsatisfiable subformula  MUS Smallest minimal unsatisfiable subformula SMUS 

References

  1. 1.
    Aharoni, R., & Linial, N. (1986). Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. Journal of Combinatorial Theory Series A, 43(2), 196–204.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andraus, Z. S., Liffiton, M. H., & Sakallah, K. A. (2006). Refinement strategies for verification methods based on datapath abstraction. In Proceedings of the 2006 conference on Asia South Pacific design automation (ASP-DAC’06) (pp. 19–24).Google Scholar
  3. 3.
    Andraus, Z. S., Liffiton, M. H., & Sakallah, K. A. (2007). CEGAR-based formal hardware verification: A case study. Technical Report CSE-TR-531-07, University of Michigan.Google Scholar
  4. 4.
    Bailey, J., & Stuckey, P. J. (2005). Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In Proceedings of the 7th international symposium on practical aspects of declarative languages (PADL’05), LNCS (Vol. 3350, pp. 174–186).Google Scholar
  5. 5.
    Birnbaum, E., & Lozinskii, E. L. (2003). Consistent subsets of inconsistent systems: Structure and behaviour. Journal of Experimental and Theoretical Artificial Intelligence, 15, 25–46.MATHCrossRefGoogle Scholar
  6. 6.
    Bruni, R., & Sassano, A. (2001). Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. In LICS 2001 workshop on theory and applications of satisfiability testing (SAT-2001), Electronic Notes in Discrete Mathematics (Vol. 9, pp. 162–173).Google Scholar
  7. 7.
    Büning, H. K. (2000). On subclasses of minimal unsatisfiable formulas. Discrete Applied Mathematics, 107(1–3), 83–98.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Büning, H. K., & Zhao, X. (2001). Minimal falsity for QBF with deficiency one. Workshop on Theory and Applications of Quantified Boolean Formulas.Google Scholar
  9. 9.
    Dasgupta, S., & Chandru, V. (2004). Minimal unsatisfiable sets: Classification and bounds. In M. J. Maher (Ed.), Advances in computer science—ASIAN 2004, LNCS (Vol. 3321, pp. 330–342). Springer.Google Scholar
  10. 10.
    Davydov, G., Davydova, I., & Büning, H. K. (1998). An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics and Artificial Intelligence, 23(3–4), 229–245.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Proceedings of the 6th international conference on theory and applications of satisfiability testing (SAT-2003), LNCS (Vol. 2919, pp. 502–518).Google Scholar
  12. 12.
    Fleischner, H., Kullmann, O., & Szeider, S. (2002). Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theoretical Computer Science, 289(1), 503–516.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gershman, R., Koifman, M., & Strichman, O. (2006). Deriving small unsatisfiable cores with dominators. In Proceedings of the 18th international conference on computer aided verification (CAV’06) (pp. 109–122).Google Scholar
  14. 14.
    Goldberg, E., & Novikov, Y. (2003). Verification of proofs of unsatisfiability for CNF formulas. In Proceedings of the conference on design, automation, and test in Europe (DATE’03) (pp. 10886–10891).Google Scholar
  15. 15.
    Grégoire, É., Mazure, B., & Piette, C. (2007). Local-search extraction of MUSes. Constraints, 12(3), 325–344.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hachtel, G. D., & Somenzi, F. (1996). Logic synthesis and verification algorithms. Kluwer Academic.Google Scholar
  17. 17.
    Han, B., & Lee, S.-J. (1999). Deriving minimal conflict sets by CS-trees with mark set in diagnosis from first principles. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 29(2), 281–286, April.Google Scholar
  18. 18.
    Huang, J. (2005). MUP: A minimal unsatisfiability prover. In Proceedings of the 10th Asia and South Pacific design automation conference (ASP-DAC’05) (pp. 432–437).Google Scholar
  19. 19.
    Jain, H., Kroening, D., Sharygina, N., & Clarke, E. (2005). Word level predicate abstraction and refinement for verifying RTL verilog. In Proceedings of the 42nd annual conference on design automation (DAC’05) (pp. 445–450).Google Scholar
  20. 20.
    Kullmann, O. (2000). An application of matroid theory to the SAT problem. In 15th annual IEEE conference on computational complexity (pp. 116–124), July.Google Scholar
  21. 21.
    Kurshan, R. P. (1994). Computer aided verification of coordinating processes. Princeton University Press, Princeton, NJ.Google Scholar
  22. 22.
    Liffiton, M. H., & Sakallah, K. A. (2005). On finding all minimally unsatisfiable subformulas. In Proceedings of the 8th international conference on theory and applications of satisfiability testing (SAT-2005), LNCS (Vol. 3569, pp. 173–186).Google Scholar
  23. 23.
    Liffiton, M. H., & Sakallah, K. A. (2008). Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning, 40(1), 1–33, January.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lynce, I., & Marques-Silva, J. (2004). On computing minimum unsatisfiable cores. In The 7th international conference on theory and applications of satisfiability testing (SAT-2004).Google Scholar
  25. 25.
    Mneimneh, M. N., Lynce, I., Andraus, Z. S., Silva, J. P. M., & Sakallah, K. A. (2005). A branch-and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In Proceedings of the 8th international conference on theory and applications of satisfiability testing (SAT-2005), LNCS (Vol. 3569, pp. 467–474).Google Scholar
  26. 26.
    Nam, G.-J., Aloul, F. A., Sakallah, K. A., & Rutenbar, R. A. (2004). A comparative study of two Boolean formulations of FPGA detailed routing constraints. IEEE Transactions on Computers, 53(6), 688–696.CrossRefGoogle Scholar
  27. 27.
    Oh, Y., Mneimneh, M. N., Andraus, Z. S., Sakallah, K. A., & Markov, I. L. (2004). AMUSE: A minimally-unsatisfiable subformula extractor. In Proceedings of the 41st annual conference on design automation (DAC’04) (pp. 518–523).Google Scholar
  28. 28.
    Papadimitriou, C. H., & Wolfe, D. (1988). The complexity of facets resolved. Journal of Computer and System Sciences, 37(1), 2–13.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sinz, C. (2003). SAT benchmarks from automotive product configuration. Website. http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/.
  30. 30.
    Sinz, C., Kaiser, A., & Küchlin, W. (2003). Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 17(1), 75–97.CrossRefGoogle Scholar
  31. 31.
    Szeider, S. (2004). Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable. Journal of Computer and System Sciences, 69(4), 656–674, December.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Zhang, J., Li, S., & Shen, S. (2006). Extracting minimum unsatisfiable cores with a greedy genetic algorithm. In AI 2006: Advances in artificial intelligence, LNCS (Vol. 4304, pp. 847–856).Google Scholar
  33. 33.
    Zhang, L., & Malik, S. (2003). Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In The 6th international conference on theory and applications of satisfiability testing (SAT-2003).Google Scholar
  34. 34.
    Zhang, L., & Malik, S. (2003). Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In Proceedings of the conference on design, automation, and test in Europe (DATE’03) (pp. 10880–10885).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark Liffiton
    • 1
  • Maher Mneimneh
    • 1
  • Inês Lynce
    • 2
  • Zaher Andraus
    • 1
  • João Marques-Silva
    • 3
  • Karem Sakallah
    • 1
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Technical University of LisbonLisbonPortugal
  3. 3.University of SouthamptonSouthamptonUK

Personalised recommendations