Constraints

, Volume 14, Issue 1, pp 3–15 | Cite as

Relatively quantified constraint satisfaction

Article

Abstract

The constraint satisfaction problem (CSP) is a convenient framework for modelling search problems; the CSP involves deciding, given a set of constraints on variables, whether or not there is an assignment to the variables satisfying all of the constraints. This paper is concerned with the more general framework of quantified constraint satisfaction, in which variables can be quantified both universally and existentially. We study the relatively quantified constraint satisfaction problem (RQCSP), in which the values for each individual variable can be arbitrarily restricted. We give a complete complexity classification of the cases of the RQCSP where the types of constraints that may appear are specified by a constraint language.

Keywords

Quantified constraint satisfaction Computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Böhler, E., Creignou, N., Reith, S., & Vollmer, H. (2004). Playing with boolean blocks, part II: Constraint satisfaction problems. ACM SIGACT-Newsletter, 35(1), 22–35.CrossRefGoogle Scholar
  2. 2.
    Börner, F., Bulatov, A., Krokhin, A., & Jeavons, P. (2003). Quantified constraints: Algorithms and complexity. In Computer Science Logic 2003.Google Scholar
  3. 3.
    Bulatov, A. (2003). Tractable conservative constraint satisfaction problems. In Proceedings of 18th IEEE symposium on logic in computer science (LICS ’03) pp. 321–330. Extended version appears as Oxford University technical report PRG-RR–03-01.Google Scholar
  4. 4.
    Bulatov, A. A. (2006). A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM (JACM), 53, 66–120.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bulatov, A., & Dalmau, V. (2006). A simple algorithm for mal’tsev constraints. SIAM Journal of Computing, 36(1), 16–27.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bulatov, A., Chen, H., & Dalmau, V. (2004). Learnability of relatively quantified generalized formulas. In Proceedings of the 15th international conference on algorithmic learning theory (ALT).Google Scholar
  7. 7.
    Bulatov, A., Krokhin, A., & Jeavons, P. (2000). Constraint satisfaction problems and finite algebras. In Proceedings 27th international colloquium on automata, languages, and programming – ICALP’00, Lecture Notes In Computer Science (Vol. 1853, pp. 272–282)Google Scholar
  8. 8.
    Chen, H. (2004). The computational complexity of quantified constraint satisfaction. Technical Report Ph.D. thesis, Cornell University. http://www.tecn.upf.es/~hchen.
  9. 9.
    Chen, H. (2005). Quantified constraint satisfaction, maximal constraint languages, and symmetric polymorphisms. In STACS.Google Scholar
  10. 10.
    Chen, H. (2006). The complexity of quantified constraint satisfaction: Collapsibility, sink algebras, and the three-element case. arxiv cs.LO/0607106.Google Scholar
  11. 11.
    Creignou, N., Khanna, S., & Sudan, M. (2001). Complexity classification of boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications. Philadelphia: Society for Industrial and Applied Mathematics.Google Scholar
  12. 12.
    Dalmau, V. (1997). Some dichotomy theorems on constant-free quantified boolean formulas. Technical Report LSI-97-43-R, Llenguatges i Sistemes Informàtics - Universitat Politècnica de Catalunya.Google Scholar
  13. 13.
    Dalmau, V., & Pearson, J. (1999). Closure functions and width 1 problems. In CP 1999, pp. 159–173.Google Scholar
  14. 14.
    Feder, T., & Kolaitis, P. (2006). Closures and dichotomies for quantified constraints. Electronic Colloquium on Computational Complexity, Report TR06-160.Google Scholar
  15. 15.
    Feder, T., & Vardi, M. Y. (1998). The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal of Computation, 28(1), 57–104.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jeavons, P. (1998). On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200, 185–204.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jeavons, P., Cohen, D., & Cooper, M. (1998). Constraints, consistency, and closure. Artificial Intelligence, 101(1–2), 251–265.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jeavons, P. G., Cohen, D. A., & Gyssens, M. (1997). Closure properties of constraints. Journal of the ACM, 44, 527–548.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Krokhin, A., Bulatov, A., & Jeavons, P. (2005). The complexity of constraint satisfaction: An algebraic approach. Heidelberg: Springer.Google Scholar
  20. 20.
    Martin, B., & Madelaine, F. (2006). Towards a trichotomy for quantified H-coloring. In Logical approaches to computational barriers, second conference on computability in Europe, lecture notes in computer science. Springer.Google Scholar
  21. 21.
    Pöschel, R., & Kaluz̆nin, L. A. (1979). Funktionen- und Relationenalgebren. Boston: Birkhäuser.Google Scholar
  22. 22.
    Schaefer, T. J. (1978). The complexity of satisfiability problems. In Proceedings of the ACM symposium on theory of computing (STOC), pp. 216–226.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratoire d’informatique (LIX)École PolytechniqueParisFrance
  2. 2.Departament de Tecnologies de la Informació i les ComunicacionsUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations