Constraints

, Volume 14, Issue 2, pp 137–176 | Cite as

Cost-Based Filtering Techniques for Stochastic Inventory Control Under Service Level Constraints

  • S. Armagan Tarim
  • Brahim Hnich
  • Roberto Rossi
  • Steven Prestwich
Article

Abstract

This paper1 considers a single product and a single stocking location production/inventory control problem given a non-stationary stochastic demand. Under a widely-used control policy for this type of inventory system, the objective is to find the optimal number of replenishments, their timings and their respective order-up-to-levels that meet customer demands to a required service level. We extend a known CP approach for this problem using three cost-based filtering methods. Our approach can solve to optimality instances of realistic size much more efficiently than previous approaches, often with no search effort at all.

Keywords

Inventory control Non-stationary (R, S) policy Stochastic demand Cost-based filtering Dynamic programming relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K. (2003). Principles of constraint programming. New York, NY, USA: Cambridge University Press.Google Scholar
  2. 2.
    Askin, R. G. (1981). A procedure for production lot sizing with probabilistic dynamic demand. AIIE Transactions, 13, 132–137.MathSciNetGoogle Scholar
  3. 3.
    Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.MATHGoogle Scholar
  4. 4.
    Bookbinder, J. H., & Tan, J. Y. (1988). Strategies for the probabilistic lot-sizing problem with service-level constraints. Management Science, 34, 1096–1108.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction problems: Algorithms and applications. European Journal of Operational Research, 119, 557–581.MATHCrossRefGoogle Scholar
  6. 6.
    Charnes, A., & Cooper, W. W. (1959). Chance-constrainted programming. Management Science, 6(1), 73–79.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fahle T., & Sellmann, M. (2002). Cost-based filtering for the constrained knapsack problem. Annals of Operations Research, 115, 73–93.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Florian, M., Lenstra, J. K., & Rinooy Kan, A. H. G. (1980). Deterministic production planning: Algorithms and complexity. Management Science, 26(7), 669–679.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Proceedings of the 5th international conference on the principles and practice of constraint programming (pp. 189–203). Springer, 1999. Lecture notes in computer science no. 1713.Google Scholar
  10. 10.
    Focacci, F., & Milano, M. (2001). Connections and integrations of dynamic programming and constraint programming. In Proceedings of the international workshop on integration of AI and OR techniques in constraint programming for combinatorial optimization problems CP-AI-OR 2001.Google Scholar
  11. 11.
    Garey, M. R., & Johnson, D. S. (1990). Computers and intractability; A guide to the theory of NP-completeness. New York, NY, USA: FreemanGoogle Scholar
  12. 12.
    Laburthe, F., & the OCRE project team. (1994). Choco: Implementing a cp kernel. Technical report, Bouygues e-Lab, France.Google Scholar
  13. 13.
    Rossi, R., Tarim, S. A., Hnich, B., & Prestwich, S. (2007). Replenishment planning for stochastic inventory systems with shortage cost. In Proceedings of the international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems CP-AI-OR 2007 (pp. 229–243). Springer. Lecture Notes in Computer Science No. 4510.Google Scholar
  14. 14.
    Rossi, R., Tarim, S. A., Hnich, B., & Prestwich, S. (2008). A global chance-constraint for stochastic inventory systems under service level constraints. Constraints (to appear)Google Scholar
  15. 15.
    Sedgewick, R. (1988). Algorithms (2nd edn.). Boston, MA, USA: Addison-WesleyGoogle Scholar
  16. 16.
    Silver, E. A. (1978). Inventory control under a probabilistic time-varying demand pattern. AIIE Transactions, 10, 371–379.Google Scholar
  17. 17.
    Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling. New York: Wiley.Google Scholar
  18. 18.
    Tarim, S. A. (1996). Dynamic lotsizing models for stochastic demand in single and multi-echelon inventory systems. Ph.D. thesis, Lancaster University.Google Scholar
  19. 19.
    Tarim, S. A., Hnich, B., Rossi, R., & Prestwich, S. (2007). Cost-based filtering for stochastic inventory control. In Recent advances in constraints joint ERCIM/CoLogNET international workshop on constraint solving and constraint logic programming, CSCLP 2006, (pp. 169–183). Springer. Lecture notes in artificial intelligence no. 4651.Google Scholar
  20. 20.
    Tarim, S. A., & Kingsman, B. G. (2004). The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. International Journal of Production Economics, 88, 105–119.CrossRefGoogle Scholar
  21. 21.
    Tarim, S. A., & Kingsman, B. G. (2006). Modelling and computing (R n,S n) policies for inventory systems with Non-stationary stochastic demand. European Journal of Operational Research, 174, 581–599.MATHCrossRefGoogle Scholar
  22. 22.
    Tarim, S. A., Manandhar, S., & Walsh, T. (2006). Stochastic constraint programming: A scenario-based approach. Constraints, 11(1), 53–80.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tarim, S. A., & Smith, B. (2008). Constraint programming for computing non-stationary (R,S) inventory policies. European Journal of Operational Research (to appear)Google Scholar
  24. 24.
    Van Hentenryck, P., & Carillon, J. P. (1988). Generality vs. specificity: An experience with ai and or techniques. In Proceedings of the national conference on artificial intelligence (AAAI-88).Google Scholar
  25. 25.
    Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management Science, 5, 89–96.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Armagan Tarim
    • 1
  • Brahim Hnich
    • 2
  • Roberto Rossi
    • 3
    • 4
  • Steven Prestwich
    • 3
  1. 1.Department of ManagementHacettepe UniversityAnkaraTurkey
  2. 2.Faculty of Computer ScienceIzmir University of EconomicsIzmirTurkey
  3. 3.Cork Constraint Computation CentreUniversity CollegeCorkIreland
  4. 4.Centre for Telecommunication Value—Chain Driven ResearchDublinIreland

Personalised recommendations