Advertisement

Constraints

, Volume 13, Issue 1–2, pp 130–154 | Cite as

Mendelian Error Detection in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques

  • Marti Sanchez
  • Simon de GivryEmail author
  • Thomas Schiex
Article

Abstract

With the arrival of high throughput genotyping techniques, the detection of likely genotyping errors is becoming an increasingly important problem. In this paper we are interested in errors that violate Mendelian laws. The problem of deciding if a Mendelian error exists in a pedigree is NP-complete (Aceto et al., J Comp Sci Technol 19(1):42–59, 2004). Existing tools dedicated to this problem may offer different level of services: detect simple inconsistencies using local reasoning, prove inconsistency, detect the source of error, propose an optimal correction for the error. All assume that there is at most one error. In this paper we show that the problem of error detection, of determining the minimum number of errors needed to explain the data (with a possible error detection) and error correction can all be modeled using soft constraint networks. Therefore, these problems provide attractive benchmarks for weighted constraint network (WCN) solvers. Because of their sheer size, these problems drove us into the development of a new WCN solver toulbar2 which solves very large pedigree problems with thousands of animals, including many loops and several errors.

Keywords

Mendelian genotyping error detection Complex pedigrees Weighted constraint satisfaction Genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Hansen, J. A., Ingólfsdóttir, A., Johnsen, J., & Knudsen, J. (2004). The complexity of checking consistency of pedigree information and related problems. Journal of Computer Science Technology, 19(1), 42–59.CrossRefGoogle Scholar
  2. 2.
    Bennewitz, J., Reinsch, N., & Kalm, E. (2002). GENCHECK: A program for consistency checking and derivation of genotypes at co-dominant and dominant loci. Journal of Animal Breeding and Genetics, 119(5), 350–360.CrossRefGoogle Scholar
  3. 3.
    Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., & Verfaillie, G. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints, 4, 199–240.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Cooper, M. (2005). High-order consistency in valued constraint satisfaction. Constraints, 10(3), 283–305.CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Cooper, M. (2003). Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets and Systems, 134(3), 311–342.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Cooper, M., de Givry, S., & Schiex, T. (2007). Optimal soft arc consistency. In Proc. of IJCAI-2007 (pp. 68–73). Hyderabad, India.Google Scholar
  7. 7.
    Dechter, R. (2003). Constraint processing. Morgan Kaufmann Publishers.Google Scholar
  8. 8.
    Eén, N., & Sörensson, N. (2006). Translating Pseudo-Boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation, 2, 61–96.Google Scholar
  9. 9.
    Ehm, M. G., Cottingham Jr., R. W., & Kimmel, M. (1996). Error detection in genetic linkage data using likelihood based methods. American Journal of Human Genetics, 58(1), 225–234.Google Scholar
  10. 10.
    Fishelson, M., Dovgolevsky, N., & Geiger, D. (2005). Maximum likelihood haplotyping for general pedigrees. Human Heredity, 59, 41–60.CrossRefGoogle Scholar
  11. 11.
    de Givry, S., Larrosa, J., Meseguer, P., & Schiex, T. (2003). Solving Max-SAT as weighted CSP. In Proc. of CP-2003 (pp. 363–376). Cork, Ireland.Google Scholar
  12. 12.
    de Givry, S., Schiex, T., & Verfaillie, G. (2006). Exploiting tree decomposition and soft local consistency in weighted CSP. In Proc. of AAAI-2006. Boston, MA.Google Scholar
  13. 13.
    Larrosa, J. (2002). On arc and node consistency in weighted CSP. In Proc. of AAAI-2002 (pp. 48–53). Edmondton.Google Scholar
  14. 14.
    Larrosa, J., & Dechter, R. (2000). On the dual representation of non-binary semiring-based CSPs. In CP’2000 workshop on soft constraints. Singapore.Google Scholar
  15. 15.
    Larrosa, J., de Givry, S., Heras, F., & Zytnicki, M. (2005). Existential arc consistency: Getting closer to full arc consistency in weighted CSPs. In Proc. of IJCAI-2005 (pp. 84–89). Edinburgh, Scotland.Google Scholar
  16. 16.
    Larrosa, J., Morancho, E., & Niso, D. (2005). On the practical applicability of Bucket elimination: Still-life as a case study. Journal of Artificial Intelligence Research, 23, 421–440.zbMATHGoogle Scholar
  17. 17.
    Larrosa, J., & Schiex, T. (2003). In the quest of the best form of local consistency for weighted CSP. In Proc. of IJCAI-2003 (pp. 239–244). Acapulco, Mexico.Google Scholar
  18. 18.
    Lecoutre, C., Sais, L., Tabary, S., & Vidal, V. (2006). Last conflict based reasoning. In Proc. of ECAI-2006 (pp. 133–137). Trento, Italy.Google Scholar
  19. 19.
    Lynce, I., & Marques Silva, J. P. (2006). Efficient haplotype inference with Boolean satisfiability. In Proc. of AAAI-2006. Boston, MA.Google Scholar
  20. 20.
    Marinescu, R., & Dechter, R. (2006). Memory intensive branch-and-bound search for graphical models. In Proc. of AAAI-2006. Boston, MA.Google Scholar
  21. 21.
    Mengshoel, O., Roth, D., & Wilkins, D. (2006). Controlled generation of hard and easy Bayesian networks: Impact on maximal clique size in tree clustering. Artificial Intelligence, 170(16-17), 1137–1174.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    O’Connell, J. R., & Weeks, D. E. (1998). PedCheck: A program for identification of genotype incompatibilities in linkage analysis. American Journal of Human Genetics, 63(1), 259–266.CrossRefGoogle Scholar
  23. 23.
    O’Connell, J. R., & Weeks, D. E. (1999). An optimal algorithm for automatic genotype elimination. American Journal of Human Genetics, 65(6), 1733–1740.CrossRefGoogle Scholar
  24. 24.
    Park, J. D., & Darwiche, A. (2004). Complexity results and approximation strategies for MAP explanations. Journal of Artificial Intelligence Research, 21, 101–133.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Saito, M., Saito, A., & Kamatani, N. (2002). Web-based detection of genotype errors in pedigree data. Journal of Human Genetics, 47(7), 377–379.CrossRefGoogle Scholar
  26. 26.
    Schiex, T. (2000). Arc consistency for soft constraints. In Proc. of CP-2000 (pp. 411–424). Singapore.Google Scholar
  27. 27.
    Sheini, H., & Sakallah, K. (2006). Pueblo: A hybrid Pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 2, 61–96.Google Scholar
  28. 28.
    Thomas, A. (2005). GMCheck: Bayesian error checking for pedigree genotypes and phenotypes. Bioinformatics, 21(14), 3187–3188.CrossRefGoogle Scholar
  29. 29.
    Vitezica, Z., Elsen, J.-M., Rupp, R., & Díaz, C. (2005). Using genotype probabilities in survival analysis: A scrapie case. Genetics Selection Evolution, 37(4), 403–415.CrossRefGoogle Scholar
  30. 30.
    Vitezica, Z., Mongeau, M., Manfredi, E., & Elsen, J.-M. (2004). Selecting loop breakers in general pedigrees. Human Heredity, 57, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.INRA - UBIAToulouseFrance

Personalised recommendations