Constraints

, Volume 12, Issue 3, pp 293–324 | Cite as

Generic Incremental Algorithms for Local Search

Article

Abstract

When a new (global) constraint is introduced in local search, measures for the penalty and variable conflicts of that constraint must be defined, and incremental algorithms for maintaining these measures must be implemented. These are complicated and time-consuming tasks, which clearly reduces the productivity of the local-search practitioner. We introduce a generic scheme that, from a description of a constraint in monadic existential second-order logic extended with counting, automatically gives penalty and variable-conflict measures for such a constraint, as well as incremental algorithms for maintaining these measures. We prove that our variable-conflict measure for a variable x is lower-bounded by the maximum penalty decrease that may be achieved by only changing the value of x, as well as upper bounded by the penalty measure. Without these properties, the local search performance may degrade. We also demonstrate the usefulness of the approach by replacing a built-in global constraint by a modelled version, while still obtaining competitive results in terms of runtime and robustness. This is especially attractive when a particular (global) constraint is not built in.

Keywords

Local search Global constraint Monadic existential second-order logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., & Lenstra, J. K. (Eds.) (1997). Local search in combinatorial optimization. New York: Wiley.MATHGoogle Scholar
  2. 2.
    Ågren, M., Flener, P., & Pearson, J. (2005). Incremental algorithms for local search from existential second-order logic. In P. van Beek (Ed.), Proceedings of CP’05. LNCS (Vol. 3709, pp. 47–61). Berlin Heidelberg New York: Springer.Google Scholar
  3. 3.
    Ågren, M., Flener, P., & Pearson, J. (2005). Set variables and local search. In R. Barták & M. Milano (Eds.), Proceedings of CP-AI-OR’05. LNCS (Vol. 3524, pp. 19–33). Berlin Heidelberg New York: Springer.Google Scholar
  4. 4.
    Ågren, M., Flener, P., & Pearson, J. (2006). Inferring variable conflicts for local search. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 665–669). Berlin Heidelberg New York: Springer.Google Scholar
  5. 5.
    Azevedo, F., & Barahona, P. (2000). Applications of an extended set constraint solver. In Proceedings of the ERCIM / CompulogNet Workshop on Constraints.Google Scholar
  6. 6.
    Bohlin, M. (2004). Design and Implementation of a Graph-based Constraint Model for Local Search. PhL thesis, Mälardalen University, Västerås, Sweden.Google Scholar
  7. 7.
    Galinier, P., & Hao, J.-K. (2000). A general approach for constraint solving by local search. In Proceedings of CP-AI-OR’00.Google Scholar
  8. 8.
    Gervet, C. (1997). Interval propagation to reason about sets: Definition and implementation of a practical language. Constraints, 1(3), 191–244.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Glover, F., & Laguna, M. (1993). Tabu search. In Modern Heuristic Techniques for Combinatorial Problems (pp. 70–150). New York: Wiley.Google Scholar
  10. 10.
    Immerman, N. (1998). Descriptive complexity. Springer.Google Scholar
  11. 11.
    Michel, L., & Van Hentenryck, P. (1997). Localizer: A modeling language for local search. In G. Smolka (Ed.), Proceedings of CP’97. LNCS (Vol. 1330, pp. 237–251). Berlin Heidelberg New York: Springer.Google Scholar
  12. 12.
    Michel, L., & Van Hentenryck, P. (2002). A constraint-based architecture for local search. ACM SIGPLAN Not., 37(11), 101–110 (Proceedings of OOPSLA’02).CrossRefGoogle Scholar
  13. 13.
    Nareyek, A. (2001). Using global constraints for local search. In E. C. Freuder & R. J. Wallace (Eds.), Constraint programming and large scale discrete optimization. DIMACS: Series in discrete mathematics and theoretical computer science (Vol. 57, pp. 9–28). Providence, RI: American Mathematical Society.Google Scholar
  14. 14.
    Puget, J.-F. (1996). Finite set intervals. In Proceedings of CP’96 Workshop on Set Constraints.Google Scholar
  15. 15.
    Smith, B. M., Brailsford, S. C., Hubbard, P. M., & Williams, H. P. (1996). The progressive party problem: Integer linear programming and constraint programming compared. Constraints, 1, 119–138.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Tack, G., Schulte, C., & Smolka, G. (2006). Generating propagators for finite set constraints. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 575–589). Berlin Heidelberg New York: Springer.Google Scholar
  17. 17.
    Van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. The MIT Press.Google Scholar
  18. 18.
    Van Hentenryck, P., & Michel, L. (2006). Differentiable invariants. In F. Benhamou (Ed.), Proceedings of CP’06. LNCS (Vol. 4204, pp. 604–619). Berlin Heidelberg New York: Springer.Google Scholar
  19. 19.
    Van Hentenryck, P., Michel, L., & Liu, L. (2004). Constraint-based combinators for local search. In M. Wallace (Ed.), Proceedings of CP’04. LNCS (Vol. 3258, pp. 47–61). Berlin Heidelberg New York: Springer.Google Scholar
  20. 20.
    Walser, J. P. (1999). Integer optimization by local search: A domain-independent approach. In LNCS (Vol. 1637). Berlin Heidelberg New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations