, Volume 11, Issue 4, pp 353–373 | Cite as

Nondeterministic Control for Hybrid Search

Original Paper


Hybrid algorithms combining local and systematic search often use nondeterminism in fundamentally different ways. They may differ in the strategy to explore the search tree and/or in how computation states are represented. This paper presents nondeterministic control structures to express a variety of hybrid search algorithms concisely and elegantly. These nondeterministic abstractions describe the search tree and are compiled in terms of first-class continuations. They are also parameterized by search controllers that are under user control and specify the state representation and the exploration strategy. The resulting search language is thus high-level, flexible, and directly extensible. The abstractions are illustrated on a jobshop scheduling algorithm that combines tabu search and a limited form of backtracking. Preliminary experimental results indicate that the control structures induce small, often negligible, overheads.


constraint language local search hybrid search non determinism continuation closure solution checkpoint search procedure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balas, A., & Vazacopoulos, E. (1998). Guided local search with shifting bottleneck for job shop scheduling. Manage. Sci. 44(2): 262–275.MATHGoogle Scholar
  2. 2.
    Bent, R., & Van Hentenryck, P. (2004). A two-stage hybrid local search for the vehicle routing problem with time windows. Transp. Sci. 8(4): 515–530.CrossRefGoogle Scholar
  3. 3.
    de Givry, S., & Jeannin, L. (2003). Tools: A library for partial and hybrid search methods. In CP-AI-OR’03, Montreal, Canada.Google Scholar
  4. 4.
    Laburthe, F., & Caseau, Y. (1998). SALSA: A language for search algorithms. In CP’98, Pisa, Italy.Google Scholar
  5. 5.
    Michel, L., & Van Hentenryck, P. (2002). A constraint-based architecture for local search. In OOPSLA’02., pages 101–110. Seattle, Washington.Google Scholar
  6. 6.
    Michel, L., & Van Hentenryck, P. (2002). A decomposition-based implementation of search strategies. ACM Trans. Comput. Log., 5(2): 351–383.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Manage. Sci. 42(6): 797–813.MATHCrossRefGoogle Scholar
  8. 8.
    Perron, L. (1999). Search procedures and parallelism in constraint programming. In CP’99, pages 346–360. Alexandra, Virginia.Google Scholar
  9. 9.
    Rousseau, L. M., Gendreau, M., & Pesant, G. (2002). Using constraint-based operators to solve the vehicle routing problem with time windows. Journal of Heuristics, 8: 43–58MATHCrossRefGoogle Scholar
  10. 10.
    Schulte, C. (1997). Programming constraint inference engines. In CP’97, pages 519–533. Linz, Austria.Google Scholar
  11. 11.
    Schulte, C. (1999) Comparing trailing and copying for constraint programming. In ICLP-99, pages 275–289. Las Cruces, New Mexico.Google Scholar
  12. 12.
    Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In CP’98, pages 417–431. Pisa, Italy.Google Scholar
  13. 13.
    Van Hentenryck, P. (1999). The OPL Optimization Programming Language. Cambridge, Massachusetts: MIT.Google Scholar
  14. 14.
    Van Hentenryck, P., & Michel, L. (2003). Control abstractions for local search. In CP’03, pages 65–80. Cork, Ireland.Google Scholar
  15. 15.
    Van Hentenryck, P., & Michel, L. (2004). Scheduling abstractions for local search. In CP-AI-OR’04, pages 319–334. Nice, France.Google Scholar
  16. 16.
    Van Hentenryck, P., Michel, L., & Liu, L. (2004). Constraint-based combinators for local search. In CP’04. Toronto, Canada.Google Scholar
  17. 17.
    Van Hentenryck, P., Perron, L. & Puget, J-F. (2000). Search and strategies in OPL. ACM Trans. Comput. Log. 1(2): 1–36.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Brown UniversityProvidenceUSA
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations