Constraints

, Volume 10, Issue 4, pp 363–384 | Cite as

Contraint-Based Combinators for Local Search

  • Pascal Van Hentenryck
  • Laurent Michel
  • Liyuan Liu
Article

Abstract

One of the most appealing features of constraint programming is its rich constraint language for expressing combinatorial optimization problems. This paper demonstrates that traditional combinators from constraint programming have natural counterparts for local search, although their underlying computational model is radically different. In particular, the paper shows that constraint combinators, such as logical and cardinality operators, reification, and first-class expressions can all be viewed as differentiable objects. These combinators naturally support elegant and efficient modelings, generic search procedures, and partial constraint satisfaction techniques for local search. Experimental results on a variety of applications demonstrate the expressiveness and the practicability of the combinators.

Keywords

constraints languange local search logical and cardinality combinators differential objects first-class expressions reification search procedure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Codognet, C., & Diaz, D. (2001). Yet another local search method for constraint solving. In Proceedings of the International Symposium on Stochastic Algorithms: Foundations and Applications (SAGA 2001), pages 73–90. Berlin, Germany (December).Google Scholar
  2. 2.
    Dell'Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop scheduling problem. Ann. Oper. Res. 41: 231–252.CrossRefGoogle Scholar
  3. 3.
    Di Gaspero, L., & Schaerf, A. (2002). Writing local search algorithms using EASYLOCAL ++. In VOß, S. & Woodrubb, D.L., eds., Optimization Software Class Libraries, Kluwer, Boston, MA.Google Scholar
  4. 4.
    Dotú, I., Van Hentenryck, P., & Michel, L. (2005). Scheduling social golfers locally. In Proceedings of the Second International Conference on the Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR'05). Prague.Google Scholar
  5. 5.
    Freuder, E. (1992). Partial constraint satisfaction. Artif. Intell. 58: 21–70.CrossRefGoogle Scholar
  6. 6.
    Galinier, P., & Hao, J.-K. (2000). A general approach for constraint solving by local search. In Proceedings of the Second International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR'00), pages 57–69. Paderborn, Germany (March).Google Scholar
  7. 7.
    Harvey, W., & Stuckey, P. (2003). Improving linear constraint propagation by changing constraint representation. Constraints, 8(2): 173–207.CrossRefGoogle Scholar
  8. 8.
    Ilog Solver 4.4. (1998). Reference Manual. Ilog SA, Gentilly, France.Google Scholar
  9. 9.
    Johnson, D., Aragon, C., McGeoch, L., & Schevon, C. (1989). Optimization by simulated annealing: An experimental evaluation; part I, graph partitioning. Oper. Res. 37(6): 865–893.Google Scholar
  10. 10.
    Laburthe, F., & Caseau, Y. (1998). SALSA: A language for search algorithms. In Fourth International Conference on the Principles and Practice of Constraint Programming (CP'98). Pisa (October).Google Scholar
  11. 11.
    Michel, L., & Van Hentenryck, P. (2000). Localizer. Constraints. 5: 41–82.CrossRefGoogle Scholar
  12. 12.
    Michel, L., & Van Hentenryck, P. (2002). A constraint-based architecture for local search. In Conference on Object-Oriented Programming Systems, Languages, and Applications, pages 101–110. Seattle (November).Google Scholar
  13. 13.
    Michel, L., & Van Hentenryck, P. (2004). A simple Tabu search for warehouse location. Eur. J. Oper. Res. 157(3): 576–591.CrossRefGoogle Scholar
  14. 14.
    Minton, S., Johnston, M. D., & Philips, A. B. (1990). Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair method. In Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 17–24. Boston (August).Google Scholar
  15. 15.
    Nareyek, A. (1998). Constraint-Based Agents. Springer Verlag, Berlin.Google Scholar
  16. 16.
    Nareyek, A. (2004). Dragonbreath. www.ai-center.com/projects/dragonbreath/..
  17. 17.
    Petit, T., Regin, J.-C., & Bessiere, C. (2001). Specific filtering Algorithms for over–constrained problems. In Proceedings of 7th International Conference on the Principles and Practice of Constraint Programming (CP'01), pages 451–463. Paphos, Cyprus (November).Google Scholar
  18. 18.
    Prestwich, S. D. (2002). Super symmetric modeling for local search. In Second International Workshop on Symmetry in Constraint Satisfaction Problems.Google Scholar
  19. 19.
    Prestwich, S. D. (2003). Negative effects of modeling techniques on search performance. Ann. Oper. Res. 118: 137–150.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ramalingam, G. (1993). Bounded Incremental Computation. Ph.D. thesis. University of Wisconsin-Madison.Google Scholar
  21. 21.
    Selman, B., Kautz, H., & Cohen, B. (1994). Noise strategies for improving local search. In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-94), pages 337–343. Seattle (July).Google Scholar
  22. 22.
    Shaw, P., De Backer, B., & Furnon, V. (2002). Improved local Search for CP toolkits. Ann. Oper. Res. 115: 31–50.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Van Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS J. Comput. 14(4): 345–372.CrossRefGoogle Scholar
  24. 24.
    Van Hentenryck, P., & Deville, Y. (1991). The cardinality operator: A new logical connective and its application to constraint logic programming. In The 8th International Conference on Logic Programming (ICLP-91), pages 745–759. Paris, France (June).Google Scholar
  25. 25.
    Van Hentenryck, P., & Michel, L. (2003). Control abstractions for local search. In Proceedings of the Ninth International Conference on Principles and Practice of Constraint Programming, pages 65–80. Cork, Ireland.Google Scholar
  26. 26.
    Van Hoeve, W. J., Pesant, G., & Rousseau, L.-M. (2004). On global warming (Softening global constraints). In Proceedings of 6th International Workshop on Preferences and Soft Constraints, Toronto, Canada (September).Google Scholar
  27. 27.
    Voss, S., & Woodruff, D. (2002). Optimization Software Class Libraries. Kluwer Academic Publishers.Google Scholar
  28. 28.
    Voudouris, C., & Tsang, E. (1996). Partial constraint satisfaction problems and guided local search. In Proceedings of the International Conference on Practical Applications of Constraint Technology (PACT-96), pages 337–356. London (April).Google Scholar
  29. 29.
    Walser, J. (1998). Integer Optimization by Local Search. Springer Verlag.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Pascal Van Hentenryck
    • 1
  • Laurent Michel
    • 2
  • Liyuan Liu
    • 2
  1. 1.Brown UniversityProvidenceUSA
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations