Constraints

, Volume 10, Issue 4, pp 339–362

Reformulation of Global Constraints Based on Constraints Checkers

  • Nicolas Beldiceanu
  • Mats Carlsson
  • Romuald Debruyne
  • Thierry Petit
Article

Abstract

This article deals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of the corresponding global constraint. By reducing the automaton to a conjunction of signature and transition constraints we show how to systematically obtain an automaton reformulation. Under some restrictions on the signature and transition constraints, this reformulation maintains arc-consistency. An implementation based on some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted class of automata we provide an automaton reformulation for the relaxed case, where the violation cost is the minimum number of variables to unassign in order to get back to a solution.

Keywords

global constraints automata reformulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlsson, M., & Beldiceanu, N. (2004). From constraints to finite automata to filtering algorithms. In Schmidt, D., ed., Proc. ESOP2004, volume 2986 of LNCS, pages 94–108. Springer-Verlag.Google Scholar
  2. 2.
    Vempaty, N. R. (1992). Solving constraint satisfaction problems using finite state automata. In National Conference on Artificial Intelligence (AAAI-92), pages 453–458. AAAI Press.Google Scholar
  3. 3.
    Amilhastre, J. (1999). Représentation par automate d'ensemble de solutions de problèmes de satisfaction de contraintes. PhD Thesis.Google Scholar
  4. 4.
    Amilhastre, J., Fargier, H., & Marquis P. (2002). Consistency restoration and explanations in dynamic CSPs—application to configuration. Artif. Intell. 135: 199–234.CrossRefGoogle Scholar
  5. 5.
    Boigelot, B., & Wolper, P. (2002). Representing arithmetic constraints with finite automata: An overview. In Stuckey, Peter J., ed., ICLP'2002, Int. Conf. on Logic Programming, volume 2401 of LNCS, pages 1–19. Springer-Verlag.Google Scholar
  6. 6.
    Pesant, G. (2003). A regular language membership constraint for sequence of variables. In Workshop on Modelling and Reformulation Constraint Satisfaction Problems, pages 110–119.Google Scholar
  7. 7.
    Petit, T., Régin, J.-C., & Bessière, C. (2001). Specific filtering algorithms for over-constrained problems. In Walsh, T., ed., Principles and Practice of Constraint Programming (CP'2001), volume 2239 of LNCS, pages 451–463. Springer-Verlag.Google Scholar
  8. 8.
    Milano, M. (2004). Constraint and Integer Programming. Kluwer Academic Publishers, ISBN 1-4020-7583-9.Google Scholar
  9. 9.
    Van Hentenryck, P., & Carillon, J.-P. (1988). Generality vs. specificity: An experience with AI and OR techniques. In National Conference on Artificial Intelligence (AAAI-88).Google Scholar
  10. 10.
    Beldiceanu, N. (2001). Pruning for the minimum constraint family and for the number of distinct values constraint family. In Walsh, T., ed., CP'2001, Int. Conf. on Principles and Practice of Constraint Programming, volume 2239 of LNCS, pages 211–224. Springer-Verlag.Google Scholar
  11. 11.
    Bourdais, S., Galinier, P., & Pesant, G. (2003). HIBISCUS: A constraint programming application to staff scheduling in health care. In Rossi, F., ed., CP'2003, Principles and Practice of Constraint Programming, volume 2833 of LNCS, pages 153–167. Springer-Verlag.Google Scholar
  12. 12.
    Maher, M. (2002). Analysis of a global contiguity constraint. In Workshop on Rule-Based Constraint Reasoning and Programming, held along CP-2002.Google Scholar
  13. 13.
    Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002). Global constraints for lexicographic orderings. In Van Hentenryck, Pascal, ed., Principles and Practice of Constraint Programming (CP'2002), volume 2470 of LNCS, pages 93–108. Springer-Verlag.Google Scholar
  14. 14.
    Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Math. Comput. Model. 20(12): 97–123.CrossRefGoogle Scholar
  15. 15.
    Beldiceanu, N. (2000). Global constraints as graph properties on structured network of elementary constaints of the same type. In Dechter, R., ed., CP'2000, Principles and Practice of Constraint Programming, volume 1894 of LNCS, pages 52–66. Springer-Verlag.Google Scholar
  16. 16.
    Carlsson, M., et al. (2004) SICStus Prolog User's Manual. Swedish Institute of Computer Science, 3.11 edition (January), http://www.sics.se/sicstus/.
  17. 17.
    Le Provost, T., & Wallace, M. (1992). Domain-independent propagation. In Proc. of the International Conference on Fifth Generation Computer Systems, pages 1004–1011.http://www.icparc.ic.ac.uk/eclipse/.
  18. 18.
    ILOG. ILOG Solver Reference Manual, 6.0 edition. http://www.ilog.com.
  19. 19.
    Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artif. Intell. 38: 353–366.CrossRefGoogle Scholar
  20. 20.
    Maier, D. (1983). The Theory of Relational Databases. Rockville, MD: Computer Science Pres.Google Scholar
  21. 21.
    Berge, C. (1970) Graphs and Hypergraphs. Paris: Dunod.Google Scholar
  22. 22.
    Janssen, P., & Vilarem, M.-C. (1988). Problèmes de satisfaction de contraintes: Techniques de résolution et application à la synthèse de peptides. Research Report C.R.I.M., 54.Google Scholar
  23. 23.
    Jègou, P. (1991). Contribution à l'étude des problèmes de satisfaction de contraintes: Algorithmes de propagation et de résolution. Propagation de contraintes dans les réseaux dynamiques. PhD Thesis.Google Scholar
  24. 24.
    Beldiceanu, N., Carlsson, M., & Petit, T. (2004). Deriving Filtering Algorithms from Constraint Checkers. Technical Report T2004-08, Swedish Institute of Computer Science.Google Scholar
  25. 25.
    Beeri, C., Fagin, R., Maier, D., & Yannakakis, M. (1983). On the desirability of acyclic database schemes. JACM, 30: 479–513.CrossRefGoogle Scholar
  26. 26.
    Fagin, R. (1983). Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30: 514–550 (July).CrossRefGoogle Scholar
  27. 27.
    Beldiceanu, N., & Carlsson, M. (2001). Sweep as a generic pruning technique applied to the nonoverlapping rectangles constraints. In Walsh, T., ed., Principles and Practice of Constraint Programming (CP'2001), volume 2239 of LNCS, pages 377–391. Springer-Verlag.Google Scholar
  28. 28.
    Bessière, C., Freuder, E. C., & Régin, J.-C. (1999). Using constraint metaknowledge to reduce arc consistency computation. Artif. Intell. 107: 125–148.CrossRefGoogle Scholar
  29. 29.
    Bessière, C., Régin, J.-C., Yap, R. H. C., & Zhang, Y. (2005). An optimal coarse-grained arc consistency algorithm. Artif. Intell. to appear.Google Scholar
  30. 30.
    Gent, I. P., & Walsh, T. (1999). CSPLib: A benchmark library for constraints. Technical Report, APES-09-1999, APES. http://www.csplib.org.
  31. 31.
    Carlsson, M., Ottosson, G., & Carlson, B. (1997). An open-ended finite domain constraint solver. In Glaser, H., Hartel, P., & Kuchen, H., eds., Programming Languages: Implementations, Logics, and Programming, volume 1292 of LNCS, pages 191–206. Springer-Verlag.Google Scholar
  32. 32.
    COSYTEC (2003). CHIP Reference Manual, v5 edition.Google Scholar
  33. 33.
    Refalo, P. (2000). Linear formulation of constraint programming models and hybrid solvers. In Dechter, R., ed., Principles and Practice of Constraint Programming (CP'2000), volume 1894 of LNCS, pages 369–383. Springer-Verlag.Google Scholar
  34. 34.
    Beldiceanu, N., & Carlsson, M. (2001). Revisiting the cardinality operator and introducing the cardinality-path constraint family. In Codognet, P., ed., ICLP'2001, Int. Conf. on Logic Programming, volume 2237 of LNCS, pages 59–73. Springer-Verlag.Google Scholar
  35. 35.
    Ottosson, G., Thorsteinsson, E., & Hooker, J. N. (1999). Mixed global constraints and inference in hybrid IP-CLP solvers. In CP'99 Post-Conference Workshop on Large-Scale Combinatorial Optimization and Constraints, pages 57–78.Google Scholar
  36. 36.
    Beldiceanu, N., Guo, Q., & Thiel, S. (2001). Non-overlapping constraints between convex polytopes. In Walsh, T., ed., Principles and Practice of Constraint Programming (CP'2001), volume 2239 of LNCS, pages 392–407. Springer-Verlag.Google Scholar
  37. 37.
    Beldiceanu, N., & Poder, E. (2004). Cumulated profiles of minimum and maximum resource utilisation. In Ninth Int. Conf. on Project Management and Scheduling, pages 96–99.Google Scholar
  38. 38.
    Cohen, J. (1979). Non-deterministic algorithms. ACM Comput. Surv. 11(2): 79–94.CrossRefGoogle Scholar
  39. 39.
    Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. In Juenger, M., Reinelt, G., & Rinaldi, G., eds., Combinatorial Optimization—Eureka! You shrink!, volume 2570 of LNCS, pages 185–207. Springer-Verlag.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Nicolas Beldiceanu
    • 1
  • Mats Carlsson
    • 2
  • Romuald Debruyne
    • 1
  • Thierry Petit
    • 1
  1. 1.LINA FRE CNRS 2729École des Mines de NantesNantes Cedex 3France
  2. 2.SICSKistaSweden

Personalised recommendations