Constraints

, Volume 10, Issue 1, pp 47–65 | Cite as

A Rigorous Global Filtering Algorithm for Quadratic Constraints*

Original Article

Abstract

This article introduces a new filtering algorithm for handling systems of quadratic equations and inequations. Such constraints are widely used to model distance relations in numerous application areas ranging from robotics to chemistry. Classical filtering algorithms are based upon local consistencies and thus, are often unable to achieve a significant pruning of the domains of the variables occurring in quadratic constraint systems. The drawback of these approaches comes from the fact that the constraints are handled independently. We introduce here a global filtering algorithm that works on a tight linear relaxation of the quadratic constraints. The Simplex algorithm is then used to narrow the domains. Since most implementations of the Simplex work with floating point numbers and thus, are unsafe, we provide a procedure to generate safe linearizations. We also exploit a procedure provided by Neumaier and Shcherbina to get a safe objective value when calling the Simplex algorithm. With these two procedures, we prevent the Simplex algorithm from removing any solution while filtering linear constraint systems. Experimental results on classical benchmarks show that this new algorithm yields a much more effective pruning of the domains than local consistency filtering algorithms.

Keywords

global constraints quadratic constraints safe linearizations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Khayyal, F. (1990). Jointly constrained biconvex programming and related problems: An overview. Comput. Math. Appl. 19: 53–62.MATHMathSciNetGoogle Scholar
  2. 2.
    Al-Khayyal, F., & Falk, J. (1983). Jointly constrained biconvex programming. Math. Oper. Res. 8: 273–286.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Audet, C., Hansen, P., Jaumard, B., & Savard, G. (2000). Branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Prog. 87(1): 131–152.MATHMathSciNetGoogle Scholar
  4. 4.
    Bazarra, M., Sherali, H., & Shetty, C. (1993). Nonlinear Programming: Theory and Algorithms. John Wiley & Sons.Google Scholar
  5. 5.
    Bellido, A. (1992). Construction of iteration functions for the simultaneous computation of the solutions of equations and algebraic systems. Numer. Algorithms 6(3–4): 317–351.MathSciNetGoogle Scholar
  6. 6.
    Benhamou, F., McAllester, D., & Van-Hentenryck P. (1994). CLP(intervals) revisited. In Proceedings of the International Symposium on Logic Programming, pages 124–138.Google Scholar
  7. 7.
    COCONUT. (2002). A benchmark for global optimization and constraint satisfaction. Technical report, WWW-document (2002). http://www.mat.univie.ac.at/neum/glopt/coconut/benchmark.html.
  8. 8.
    Cox, D., Little, J., & O’Shea, D. (1997). Ideals, Varieties, and Algorithms. 2nd edition. New York: Springer-Verlag.Google Scholar
  9. 9.
    Davis, E. (1987). Constraint propagation with interval labels. J. Artif. Intell. 32: 281–331.MATHGoogle Scholar
  10. 10.
    Didrit, O. (1997). Analyse par intervalles pour l’automatique: Résolution globale et garantie de problèmes non linéaires en robotique et en commande robuste. Ph.D. thesis, Université Parix XI Orsay.Google Scholar
  11. 11.
    Faltings, B. (1994). Arc consistency for continuous variables. J. Artif. Intell. 60(2): 363–376.MathSciNetGoogle Scholar
  12. 12.
  13. 13.
    Hansen, E. R. (1992). Global Optimization Using Interval Analysis. New York: Marcel Dekker.MATHGoogle Scholar
  14. 14.
    Collavizza, H., Delobel, F., & Rueher, M. (1999). Comparing partial consistencies. Reliab. Comput. 5(3): 213–228.MATHMathSciNetGoogle Scholar
  15. 15.
    IEEE-754. (1985). IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE, New York, Std 754-1985 edition.Google Scholar
  16. 16.
    Ilog (ed.) (2000a). ILOG CPLEX 7.0, Reference Manual. Ilog.Google Scholar
  17. 17.
    Ilog (ed.) (2000b). ILOG Solver 5.0, Reference Manual. Ilog.Google Scholar
  18. 18.
    Jermann, C., Trombettoni, G., Neveu, B., & Rueher, M. (2000). A constraint programming approach for solving rigid geometric systems. In Proceedings of CP’00: Sixth International Conference on “Principles and Practice of Constraint Programming”. Singapore, pages 233–248.Google Scholar
  19. 19.
    Kearfott, R. B. (1996). Rigorous Global Search: Continous Problems. Kluwer Academic Publishers Group.Google Scholar
  20. 20.
    Lebbah, Y. (1999). Contibution à la résolution de contraintes par consistance forte. Ph.D. thesis, Ecole des Mines de Nantes, France.Google Scholar
  21. 21.
    Lebbah, Y., & Lhomme, O. (2002). Accelerating filtering techniques for numeric CSPs’. Artif. Intill. 139(1): 109–132.MATHMathSciNetGoogle Scholar
  22. 22.
    Lebba, Y., Michel, C., Rueher, M., Daney, D., & Merlet, J. (2205). Efficient and safe global constraints for handling numerical constraint system. SIAM journal of Numerical Analysis p. to appear.Google Scholar
  23. 23.
    Lebbah, Y., Rueher, M., & Michel, C. (2002). A global filtering algorithm for handling systems of quadratic equations and inequations. Proc. CP’2002, Lect. Notes Comput. Sci. 2470: 109–123.CrossRefGoogle Scholar
  24. 24.
    Lhomme, O. (1993). Consistency techniques for numeric CSPs’. In Proceedings of IJCAI’93, pages 232–238.Google Scholar
  25. 25.
    Marti, P., & Rueher, M. (1995). A distributed cooperating constraints solving system. Int. J. Artif. Intell. Tools 4(1–2): 93–113.Google Scholar
  26. 26.
    McCormick, G. (1976). Computability of global solutions to factorable non-convex programs—Part I—Convex underestimating problems. Math. Prog. 10: 147–175.MATHMathSciNetGoogle Scholar
  27. 27.
    Michel, C., Lebbah, Y., & Rueher, M. (2003). Safe embedding of the Simplex Algorithm in a CSP framework. In Proceedings of 5th Internatinal Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems CPAIOR 2003, CRT, Université de Montréal, pages 210–220.Google Scholar
  28. 28.
    Neumaier, A., & Shcherbina, O. (2002). Safe bounds in linear and mixed-integer programming. Math. Prog A. 99: 283–296.MathSciNetGoogle Scholar
  29. 29.
    Puget, J., & Van-Hentenryck, P. (1998). A constraints satisfaction approach to a circuit design problem. J. Glob. Optim. 13(1): 75–93.MATHMathSciNetGoogle Scholar
  30. 30.
    Sherali, H., & Adams, W. (1999). A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishing.Google Scholar
  31. 31.
    Sherali, H., & Tuncbilek, C. (1992). A global optimization algorithm for polynomial using a reformulation-linearization technique. J. Glob. Optim. 7: 1–31.MathSciNetGoogle Scholar
  32. 32.
    Van-Hentenryck, P., Michel, L., & Deville, Y. (1997). Numerica: a Modelling language for Global Optiization. MIT Press.Google Scholar
  33. 33.
    Wunderlings, R. (1996). Paralleler und Objektorientierter Simplex-Algorithmus (in German). Ph.D. thesis, Berlin.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.COPRIN (I3S/CNRS–INRIA)Université de Nice–Sophia AntipolisSophia Antipolis CedexFrance
  2. 2.Département Informatique, Faculté des SciencesUniversité d’Oran Es-SeniaEl-M’Naouar OranAlgeria

Personalised recommendations