Chemistry of Natural Compounds

, Volume 55, Issue 6, pp 1187–1189 | Cite as

Chemical Constituents of Pinus pumila Cones

  • Zi-Jiang Li
  • Lei Wu
  • Chuan-Ling SiEmail author
  • Jun-Hui WangEmail author
  • Xiao-Na YanEmail author
  • Hong-Ying Yu
  • Ri-Zheng Cong
  • Si-Yao Wang
  • Rui Wei

The genus Pinus (Pinaceae) contains more than 110 species, mainly distributed in the Northern Hemisphere [1–3]. The literature reports that more than 280 compounds, including terpenoids, flavonoids, lignans, phenols, and some other compounds, have been isolated from the genus Pinus [4–7]. Previous investigations also revealed that the chemical constituents of species of Pinus exhibited antioxidant [8], anti-inflammatory [9], antiasthmatic [10], anticancer [11], and antivirus activities [12]. Pinus pumila (Pall.) Regel (Pinaceae) (also called Japanese stone pine, Siberian dwarf pine, or Haimatsu) is an endemic plant distributed in northeastern China, northern Japan, northern Korea, and between the Yenisey River and East Siberia at an elevation of 1000–2300 m [13]. Seeds, buds, foliated twigs, needles, oleoresin, and roots of P. pumilaare used in northeastern Asian folk medicine for the treatment of neuralgia, dermatoses, rheumatism, favus, arthritis, and tuberculosis, as well as in...



This work was supported by the Fundamental Research Funds for the Central Nonprofit Research Institute of CAF (CAFYBB2016ZD009), the State Key Laboratory of Tree Genetics and Breeding (K2017101), the Foundation of Key Project of Research and Development Program of Jiangxi Province (Nos. 20171BBH80017 and 20171ACF60009), the Science and Technology Major Project Foundation of Jiangxi Academy of Sciences (2018-YZD1-05 and 2018-YZD2-18), and the Science Foundation for Young Doctors of Jiangxi Academy of Science (2016-YYB-07).


  1. 1.
    N. H. Sa, N. T. Tam, N. T. H. Anh, T. D. Quan, D. D. Thien, D. T. Phong, and T. T. Thuy, Nat. Prod. Res., 32, 341 (2018).CrossRefGoogle Scholar
  2. 2.
    M. Karapandzova, G. Stefkov, I. Cvetkovikj, J. P. Stanoeva, M. Stefova, and S. Kulevanova, Nat. Prod. Commun., 10, 987 (2015).PubMedGoogle Scholar
  3. 3.
    G. H. Chen, Y. C. Li, N. H. Lin, P. C. Kuo, and J. T. Tzen, Molecules, 23, 86 (2017).CrossRefGoogle Scholar
  4. 4.
    H. Pan and L. N. Lundgren, Phytochemistry, 42, 1185 (1996).CrossRefGoogle Scholar
  5. 5.
    C. L. Si, J. Z. Jiang, S. C. Liu, H. Y. Hu, X. D. Ren, G. J. Yu, and G. H. Xu, Holzforschung, 67, 357 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Wang, K. Wang, C. L. Si, Y. Y. Luo, W. Liu, X. X. Zhang, Y. Y. Tian, and J. H. Wang, Chem. Nat. Compd., 54, 717 (2018).CrossRefGoogle Scholar
  7. 7.
    C. L. Si, Y. Gao, L. Wu, R. Liu, G. H. Wang, L. Dai, X. H. Li, and Y. M. Hong, Holzforschung, 71, 697 (2017).CrossRefGoogle Scholar
  8. 8.
    X. Y. Su, Z. Y. Wang, and J. R. Liu, Food. Chem., 117, 681 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Sharma, R. Goyal, and L. Sharma, BMC Complem. Altern. M., 16, 35 (2015).CrossRefGoogle Scholar
  10. 10.
    X. Yang, H. Zhang, Y. Zhang, H. Zhao, A. Dong, D. Xu, and J. Wang, J. Essent. Oil Res., 22, 446 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Y. Dar, W. A. Shah, S. Mubashir, and M. A. Rather, Phytomedicine, 19, 1228 (2012).CrossRefGoogle Scholar
  12. 12.
    X. Yang, Y. C. Zhang, H. Zhang, A. J. Dong, H. T. Zhao, D. C. Xu, and J. Wang, Chem. Nat. Compd., 46, 227 (2010).CrossRefGoogle Scholar
  13. 13.
    M. K. Langat, A. Helfenstein, C. Horner, P. Tammela, H. Hokkanen, D. Izotov, and D. A. Mulholland, Chem. Biodiv., 15, e1800056 (2018).CrossRefGoogle Scholar
  14. 14.
    A. V. Shpatov, S. A. Popov, O. I. Salnikova, E. N. Shmidt, S. W. Kang, S. M. Kim, and B. H. Um, Chem. Biodiv., 10, 198 (2013).CrossRefGoogle Scholar
  15. 15.
    V. A. Hang, Y. V. Gatilov, Z. V. Dubovenko, and V. A. Pentegova, Chem. Nat. Compd., 16, 361 (1980).CrossRefGoogle Scholar
  16. 16.
    Y. Y. Luo, L. Q. Hu, J. H. Wang, T. W. Liu, L. Sun, S. J. Han, J. H. Shen, C. L. Si, and W. C. Hu, Chem. Nat. Compd., 54, 642 (2018).CrossRefGoogle Scholar
  17. 17.
    N. V. Kovganko, Z. N. Kashkan, E. V. Borisov, and E. V. Batura, Chem. Nat. Compd., 35, 646 (1999).CrossRefGoogle Scholar
  18. 18.
    E. J. Cho, J. Y. Choi, K. H. Lee, and S. H. Lee, Hortic. Environ. Biotechnol., 53, 561 (2012).CrossRefGoogle Scholar
  19. 19.
    I. K. Voukeng, V. P. Beng, and V. Kuete, BMC Complem. Altern. M., 16, 388 (2016).CrossRefGoogle Scholar
  20. 20.
    H. Tanabe, R. Fukutomi, K. Yasui, A. Kaneko, S. J. Imao, T. Nakayama, and M. Isemura, J. Health Sci., 57, 184 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Nazaruk, Acta Pol. Pharm., 63, 317 (2006).PubMedGoogle Scholar
  22. 22.
    X. L. Zhao, Z. M. Wang, X. J. Ma, W. G. Jing, and A. Liu, China J. Chin. Mater. Med., 38, 703 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Harbin Research Institute of Forestry MachineryChina State Forestry AdministrationHarbinP. R. China
  2. 2.Tianjin Key Laboratory of Pulp and PaperTianjin University of Science and TechnologyTianjinP. R. China
  3. 3.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinP. R. China
  4. 4.Institute of Applied ChemistryJiangxi Academy of SciencesNanchangP. R. China
  5. 5.Chinese Academy of ForestryBeijingP. R. China

Personalised recommendations