Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 6, pp 1094–1097 | Cite as

New Synthetic Method and Antioxidant Activity of Betulin Diformate and Allobetulin Formate

  • Salah ArrousEmail author
  • Imene Boudebouz
  • I. Parunov
  • E. Plotnikov
  • O. Voronova
Article
  • 40 Downloads

A simple and effective method for formylation of betulin using formic acid and 3a,6a-diphenylthioglycoluril is reported. The yield of betulin diformate was 87%. Allobetulin formate (95%) was prepared by reacting betulin diformate with trifluoroacetic acid. The structures of betulin diformate and allobetulin formate were confirmed by IR and NMR spectroscopy. The antioxidant activity of the synthesized compounds was studied.

Keywords

betulin formic acid thioglycoluril formylation betulin diformate allobetulin formate organic catalyst 

Notes

Acknowledgment

The work was sponsored by the Ministry of Education and Science of the Russian Federation (Grant No. 05-13108). Antioxidant activity was studied in the framework of state task “Nauka” No. 4.5752.2017 and a program for increasing the competency of Tomsk Polytechnic University.

References

  1. 1.
    D. W. C. MacMillan, Nature (London), 455, 304 (2008).CrossRefGoogle Scholar
  2. 2.
    A. G. Doyle and E. N. Jacobsen, Chem. Rev., 107, 5713 (2007).CrossRefGoogle Scholar
  3. 3.
    (a) Y. Takemoto, Org. Biomol. Chem., 3, 4299 (2005); (b) P. M. Pihko, Angew. Chem., Int. Ed., 43, 2062 (2004); (c) M. S. Taylor and E. N. Jacobsen, Angew. Chem., Int. Ed., 45, 1520 (2006); (d) A. G. Doyle and E. N. Jacobsen, Chem. Rev., 107, 5713 (2007).Google Scholar
  4. 4.
    C. J. Broan, A. R. Butler, D. Reed, and I. H. Sadler, J. Chem. Soc., Perkin Trans. 2, 731 (1989).CrossRefGoogle Scholar
  5. 5.
    L. Cao, J. Ding, G. Yin, M. Gao, M. Li, and A. Wu, Synlett, 9, 1445 (2009).Google Scholar
  6. 6.
    S. Khaksar, S. M. Vahdat, M. Tajbakhsh, F. Jahani, and A. Heydari, Tetrahedron Lett., 51 (49), 6388 (2010).CrossRefGoogle Scholar
  7. 7.
    T. R. Shesadri and T. N. C. Vedanthan, Phytochemistry, 10, 897 (1971).CrossRefGoogle Scholar
  8. 8.
    A. K. Batta and S. Rangaswami, Phytochemistry, 12, 214 (1973).CrossRefGoogle Scholar
  9. 9.
    C. A. Dehelean, S. C. Pinzaru, C. I. Peev, C. Soica, and D. S. Antal, J. Optoelectron. Adv. Mater., 9, 783 (2007).Google Scholar
  10. 10.
    E. E. Kovac-Besovic, K. Duric, Z. Kalodera, and E. Sofic, Bosnian J. Basic Med. Sci., 9, 31 (2009).CrossRefGoogle Scholar
  11. 11.
    (a) T. R. Shesadri and T. N. C. Vedanthan, Phytochemistry, 10, 897 (1971); (b) B. Green, M. D. Bentley, B. Y. Chung, N. G. Lynch, and B. L. Jensen, J. Chem. Educ., 84, 1985 (2007); (c) T.-S. Li, J.-X. Wang, and X.-J. Zheng, J. Chem. Soc., Perkin Trans. 1, 3957 (1998).Google Scholar
  12. 12.
    H. Schulze and K. Pieroh, “Zur Kenntnis des Betulins,” Chem. Ber., 55, 2332 (1922).CrossRefGoogle Scholar
  13. 13.
    F. N. Lugemwa, F. Y. Huang, M. D. Bentley, M. J. Mendel, and A. R. A. Alford, J. Agric. Food Chem., 38, 493 (1990).CrossRefGoogle Scholar
  14. 14.
    S. G. Errington, E. L. Ghisalberti, and P. R. Jefferies, Aust. J. Chem., 29, 1809 (1976).CrossRefGoogle Scholar
  15. 15.
    E. Plotnikov, O. Voronova, W. Linert, D. Martemianov, E. Korotkova, E. Dorozhko, A. Astashkina, I. Martemianova, S. Ivanova, and N. Bokhan, J. App. Pharm. Sci., 6 (1), 086 (2016).CrossRefGoogle Scholar
  16. 16.
    E. Plotnikov, E. Korotkova, O. Voronova, N. Sazhina, E. Petrova, A. Artamonov, L. Chernyavskaya, and E. Dorozhko, Arch. Med. Sci., 12 (5), 1071 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Salah Arrous
    • 1
    Email author
  • Imene Boudebouz
    • 1
  • I. Parunov
    • 1
  • E. Plotnikov
    • 2
  • O. Voronova
    • 2
  1. 1.National Research Tomsk State UniversityChemistry FacultyTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityChemistry FacultyTomskRussia

Personalised recommendations