Advertisement

A New Flavone from Flos Sophorae Immaturus Through Microbial Transformation by Nigrospora sphaerica ZMT05

  • Jiaqing Chen
  • Xiaoling Zhang
  • Weilin Li
  • Tong Li
  • Weijia DingEmail author
  • Chunyuan LiEmail author
Article
  • 9 Downloads

A new flavone derivative, 3′-(γ,γ-dimethylallyloxy)-5,7-dihydroxy-4′-methoxyflavone (1), was isolated from Flos Sophorae Immaturus through microbial transformation by the fungus Nigrospora sphaerica ZMT05. Its structure was elucidated by comprehensive spectroscopic analyses. This compound showed moderate in vitro antifungal activities against Colletotrichum musae and Penicillium italicum.

Keywords

flavone antifungal activity microbial transformation Nigrospora sp 

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21102049), the Natural Science Foundation of Guangdong Province (2018A030313582, 2015A030313405), the Science and Technology Project for Public Welfare Research and Capacity Building of Guangdong Province (2016A020222019), the Science and Technology Project of Guangzhou City (201707010342), the Scientific Research Foundation for Returning Overseas Chinese Scholars, State Education Ministry (Grant Number [2015] 311), and the Innovation Experiment Program for University Students of South China Agricultural University (201810564494, 201810564499).

References

  1. 1.
    H. M. Abdallah, A. M. Al-Abd, G. F. Asaad, A. B. Abdel-Naim, and A. M. El-halawany, PloS One, 9, e98559 (2014).CrossRefGoogle Scholar
  2. 2.
    X. He, Y. Bai, Z. Zhao, X. Wang, J. Fang, L. Huang, M. Zeng, Q. Zhang, Y. Zhang, and X. Zheng, J. Ethnopharmacol., 187, 160 (2016).CrossRefGoogle Scholar
  3. 3.
    X. Liu, L. Qiao, and D. Xie, Fitoterapia, 82, 1313 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Marumoto and M. Miyazawa, J. Oleo Sci., 69, 575 (2011).CrossRefGoogle Scholar
  5. 5.
    W. Li, P. Xiong, W. Zheng, X. Zhu, Z. She, W. Ding, and C. Li, Mar. Drugs, 15, 259 (2017).CrossRefGoogle Scholar
  6. 6.
    Z. Wu, Z. Xie, M. Wu, X. Li, W. Li, W. Ding, Z. She, and C. Li, J. Agric. Food Chem., 66, 5368 (2018).CrossRefGoogle Scholar
  7. 7.
    W. Ding, Y. Lu, Z. Feng, S. Luo, and C. Li, Chem. Nat. Compd., 53, 691 (2017).CrossRefGoogle Scholar
  8. 8.
    X. Zhu, D. Zhou, F. Liang, Z. Wu, Z. She, and C. Li, Fitoterapia, 123, 23 (2017).CrossRefGoogle Scholar
  9. 9.
    X. Zhu, J. Chen, S. Zhu, Y. He, W. Ding, and C. Li, Nat. Prod. Res., 32, 2375 (2018).CrossRefGoogle Scholar
  10. 10.
    M. Ahsan, J. A. Armstrong, S. Gibbons, A. I. Gray, and P. G. Waterman, Phytochemistry, 37, 259 (1994).CrossRefGoogle Scholar
  11. 11.
    W. J. Ding, S. Q. Zhang, J. H. Wang, Y. X. Lin, Q. X. Liang, W. J. Zhao, and C. Y. Li, J. Asian Nat. Prod. Res., 15, 209 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Z. X. Lu, H. Wu, and F. X. Lv, Int. J. Food Microbiol., 136, 71 (2009).CrossRefGoogle Scholar
  13. 13.
    K. Carovic-Stanko, S. Orlic, O. Politeo, F. Strikic, I. Kolak, M. Milos, and Z. Satovic, Food Chem.,119, 196 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and EnergySouth China Agricultural UniversityGuangzhouP. R. China

Personalised recommendations