Chemistry of Natural Compounds

, Volume 55, Issue 5, pp 945–947 | Cite as

Antioxidant Activity of Secondary Metabolites from Cladonia Lichens

  • I. A. Prokop′evEmail author
  • G. V. Filippova

Lichen substances (LS) form a broad group of metabolites numbering 854 compounds at this time [1]. Many LS are known to possess broad spectra of activity including antibacterial, cytotoxic, and antioxidant [2, 3]. Antioxidant activity was found for 65 LS by 2015 [4]. Moreover, research results are general and even contradictory in nature, indicating that further studies of this issue are needed.

The goal of the present study was to determine the antioxidant activity of LS from the genus Cladonia using model chemical experiments.

Previously, major secondary metabolites in 15 Cladonia lichen species collected in Yakutia and Belarus were examined [5]. The lichens contained seven major phenolic LS, i.e., atranorin (1) and barbatic (2), fumarprotocetraric (3), perlatolic (4), squamatic (5), thamnolic (6), and usnic acids (7). The isolated compounds included p-depsides (1, 2, 4, and 5), a m-depside (6), a depsidone (3), and a dibenzofuran (7).

Antiradical activity of 17was determined by...



The work was performed in the framework of State Tasks for IBPC, SB, RAS, on Projects No. AAAA-A17-117020110055-3 and AAAA-A17-117020110056-0 and for BI, RAS, No. AAAA-A18-118032390136-5 with financial support from the RFBR in the framework of Science Project No. 17-04-01483 a.


  1. 1.
    J. A. Elix, A Catalogue of Standardized Chromatographic Data and Biosynthetic Relationships for Lichen Substances, Published by the author, Canberra, 2014, 323 pp.Google Scholar
  2. 2.
    P. A. White, R. C. Oliveira, A. P. Oliveira, M. R. Serafini, A. A. Araujo, D. P. Gelain, J. C. Moreira, J. R. Almeida, J. S. Quintans, L. J. Quintans-Junior, and M. R. Santos, Molecules, 19, 14496 (2014).CrossRefGoogle Scholar
  3. 3.
    V. M. Thadhani, M. I. Choudhary, S. Ali, I. Omar, H. Siddique, and V. Karunaratne, Nat. Prod. Res., 25, 1827 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Fernandez-Moriano, M. P. Gomez-Serranillos, and A. Crespo, Pharm. Biol., 54, 1 (2016).CrossRefGoogle Scholar
  5. 5.
    I. A. Prokop′ev, L. N. Poryadina, G. V. Filippova, A. P. Yatsyna, and A. L. Shavarda, Chem. Nat. Compd., 54, 362 (2018).Google Scholar
  6. 6.
    L. Marcocci, L. Packer, M. T. Droy-Lefaix, A. Sekaki, and M. Gardes-Albert, Methods Enzymol., 234, 462 (1994).CrossRefGoogle Scholar
  7. 7.
    M. Nishimiki, N. A. Rao, and K. Yagi, Biochem. Biophys. Res. Commun., 46, 849 (1972).CrossRefGoogle Scholar
  8. 8.
    V. Marecek, A. Mikyska, D. Hampel, P. Cejka, J. Neuwirthova, and A. Malachova, J. Cereal Sci., 73, 40 (2017).CrossRefGoogle Scholar
  9. 9.
    V. V. Rogozhin, Methods of Biochemical Research [in Russian], Yakutsk, 1999, 113 pp.Google Scholar
  10. 10.
    E. B. Men′shchikova, V. Z. Lankin, and N. V. Kandalintseva, Phenolic Antioxidants in Biology and Medicine [in Russian], LAP Lambert Academic Publishing, Saarbrucken, 2012, 496 pp.Google Scholar
  11. 11.
    M. Kosanic, B. Rankovic, T. Stanojkovic, A. Rancic, and N. Manojlovic, LWT – Food Sci. Technol., 59, 518 (2014).CrossRefGoogle Scholar
  12. 12.
    S. Huneck and I. Yoshimura, Identification of Lichen Substances, Springer, Berlin, 1996, 493 pp.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Biological Problems of the Cryolithozone, Siberian BranchRussian Academy of SciencesYakutskRussia
  2. 2.V. L. Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations