Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 787–789 | Cite as

Benzenoid Derivatives and Amide Constituents of the Monascus sp.-Fermented Rice

  • Ming-Jen ChengEmail author
  • Ming-Der Wu
  • Ho-Cheng Wu
  • Hing-Yuen Chan
  • Yen-Lin Chen
  • Hsun-Shuo Chang
  • Jih-Jung Chen
  • Yueh-Hsiung Kuo

Red-yeast rice (ang-kak, red koji) made by the filamentous fungi of the Monascus species has traditionally been used in East Asia as a foodstuff in the production of natural food colorant, such as for red rice wine, red soybean cheese, meat, meat products, and fish, to aromatize and conserve meat, fish and soybean products [1]. It is also used as a folk medicine [1]. They comprise four representative species: M. pilosus, M. purpureus, M. rubber, and M. anka. These species belong to the class Ascomycetes and the family Monascaceae [1]. Red yeast rice was a great discovery in ancient China and is also used for medicinal purposes to promote digestion and blood circulation, strengthen the spleen, and remove blood stasis [2]. The above-mentioned representative yeasts can produce several pigments and some physiologically and biologically active metabolites when grown on cooked rice [1]. Monascus sp. can produce many secondary metabolites, including polyketides [2], furanoisophthalides [3],...



This investigation was supported by a grant from the Ministry of Economic Affairs of the Republic of China. The authors also thank Senior Technician Mrs. Chyi-Jia Wang of the Center for Resources, Research and Development (CRRD) of Kaohsiung Medical University for measuring the 2D NMR data.


  1. 1.
    J. Ma, Y. Li, Q. Ye, J. Li, Y. Hua, D. Ju, D. Zhang, R. Cooper, and M. Chang, J. Agric. Food Chem., 48, 5220 (2000).CrossRefGoogle Scholar
  2. 2.
    Z. Huang, Y. Xu, L. Li, and Y. Li, J. Agric. Food Chem., 56, 112 (2008).CrossRefGoogle Scholar
  3. 3.
    T. Akihisa, S. Mafune, M. Ukiya, Y. Kimura, K. Yasukawa, T. Suzuki, H. Tokuda, N. Tanabe, and T. Fukuoka, J. Nat. Prod., 67, 479 (2004).CrossRefGoogle Scholar
  4. 4.
    T. Akihisa, H. Tokuda, K. Yasukawa, M. Ukiya, A. Kiyota, N. Sakamoto, T. Suzuki, N. Tanabe, and H. Nishino, J. Agric. Food Chem., 53, 562 (2005).CrossRefGoogle Scholar
  5. 5.
    P. J. Blanc, M. O. Loret, and G. Goma, Biotechnol. Lett., 17, 291 (1995).CrossRefGoogle Scholar
  6. 6.
    S. Jongrungruangchok, P. Kittakoop, B. Yongsmith, R. Bavovada, S. Tanasupawat, N. Lartpornmatulee, and Y. Thebtaranonth, Phytochemistry, 65, 2569 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Juzlova, L. Martinkova, and V. Kren, J. Industrial Microbiol., 16, 163 (1996).CrossRefGoogle Scholar
  8. 8.
    D. Jo, D. Choe, K. Nam, and C. S. Shin, Biotechnol. Lett., 36, 1605 (2014).CrossRefGoogle Scholar
  9. 9.
    H. Nozaki, S. Date, H. Kondo, H. Kiyohara, D. Takaoda, T. Tada, and M. Nakayama, Agric. Biol. Chem., 55, 899 (1991).Google Scholar
  10. 10.
    K. Sato, Y. Goda, S. S. Sakamoto, H. Shibata, T. Maitani, and T. Yamada, Chem. Pharm. Bull., 45, 227 (1997).CrossRefGoogle Scholar
  11. 11.
    D. Wild, G. Toth, and H. U. Humpf, J. Agric. Food Chem., 50, 3999 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Wild, G. Toth, and H. U. Humpf, J. Agric. Food Chem., 51, 5493 (2003).CrossRefGoogle Scholar
  13. 13.
    W. Wei, S. Lin, M. Chen, T. Liu, A. Wang, J. Li, Q. Guo, and X. Shang, J. Nat. Prod., 80, 201 (2017).CrossRefGoogle Scholar
  14. 14.
    M. J. Cheng, M. D. Wu, I. S. Chen, and G. F. Yuan, Chem. Pharm. Bull., 56, 394 (2008).CrossRefGoogle Scholar
  15. 15.
    P. Juzlova, T. Rezanka, L. Martinkova, and V. Kren, Phytochemistry, 43, 151 (1996).CrossRefGoogle Scholar
  16. 16.
    A. Endo, J. Antibiot., 32, 852 (1979).CrossRefGoogle Scholar
  17. 17.
    Y. Kohama, S. Matsumoto, T. Mimura, N. Tanabe, A. Inada, and T. Nakanishi, Chem. Pharm. Bull., 35, 2484 (1987).CrossRefGoogle Scholar
  18. 18.
    Y. Aniya, I. I. Ohtani, T. Higa, C. Miyagi, H. Gibo, M. Shimabukuro, H. Nakanish, and J. Taira, Free Radical Biol. Med., 286, 999 (1999).Google Scholar
  19. 19.
    C. J. Pouchert and J. Behnke, The Aldrich Library of 13 C and 1 H FT-NMR Spectra, Edition 1, Vol. 2, 1993, 277 pp.Google Scholar
  20. 20.
    P. G. Baraldi, B. Cacciari, R. Romagnoli, G. Spalluto, A. Monopoli, E. Ongini, K. Varani, and P. A. Borea, J. Med. Chem., 45, 115 (2002).CrossRefGoogle Scholar
  21. 21.
    Y. C. Chang, F. R. Chang, and Y. C. Wu, J. Chin. Chem. Soc., 47, 373 (2000).CrossRefGoogle Scholar
  22. 22.
    S. C. Wilson, P. W. Howard, S. M. Forrow, J. A. Hartley, L. J. Adams, T. C. Jenkins, L. R. Kelland, and D. E. Thurston, J. Med. Chem., 42, 4028 (1999).CrossRefGoogle Scholar
  23. 23.
    T. S. Wu, Y. L. Leu, and Y. Y. Chan, Chin. Chem. Soc., 47, 221 (2000).CrossRefGoogle Scholar
  24. 24.
    N. Fukuda, M. Yonemitsu, and T. Kimura, Chem. Pharm. Bull., 30, 156 (1983).CrossRefGoogle Scholar
  25. 25.
    M. H. Chaves and N. F. Roque, Phytochemistry, 46, 879 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ming-Jen Cheng
    • 1
    Email author
  • Ming-Der Wu
    • 1
  • Ho-Cheng Wu
    • 2
  • Hing-Yuen Chan
    • 1
  • Yen-Lin Chen
    • 1
  • Hsun-Shuo Chang
    • 2
    • 3
  • Jih-Jung Chen
    • 4
    • 5
  • Yueh-Hsiung Kuo
    • 6
    • 7
    • 8
  1. 1.Bioresource Collection and Research Center (BCRC)Food Industry Research and Development Institute (FIRDI)HsinchuTaiwan
  2. 2.Graduate Institute of Natural Products, College of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.School of Pharmacy, College of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Faculty of Pharmacy, School of Pharmaceutical SciencesNational Yang-Ming UniversityTaipeiTaiwan
  5. 5.Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
  6. 6.Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
  7. 7.Department of BiotechnologyAsia UniversityTaichungTaiwan
  8. 8.Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan

Personalised recommendations