Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 775–778 | Cite as

Chemical Constituents and Bioactivity of a Fungal Endophyte from Lamium amplexicaule

  • Jian-Hui Sun
  • Zhong-Duo YangEmail author
  • Yi-Fei Zhang
Article
  • 8 Downloads

Endophytic fungi are microorganisms that inhabit the intercellular spaces of plant stems, petioles, roots, and leaves without causing visible disease symptoms [1]. Recently, many bioactive compounds with antitumor, antimicrobial, and antituberculosis properties were isolated from secondary metabolites of fungal endophytes [2]. In this paper, we described the isolation and identification of 12 compounds (1–12) from an endophytic fungus BGC-2 (identified as Alternaria alternata) from Lamium amplexicaule. The fungal strain (BGC-2) was isolated from the stems of Lamium amplexicaule and identified as Alternaria alternata based on both morphology on PDA and analysis of the DNA sequences of the ITS1-5.8S-ITS2 ribosomal RNA gene region. A GenBank search for DNA sequence similarity revealed that ITS1-5.8S-ITS2 of BGC-2 was 99% homologous to that of Alternaria alternata reference strains (KU324787.1).

The endophytic fungus BGC-2 was cultivated in PDA medium (50 L) for 5 days at 28°C in a...

Notes

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 21762027) and the Project of Science and Technology Department of Gansu Province, China (No. 1604FKCA084).

References

  1. 1.
    Z. Sun, M. Zhang, J. Zhang, and J. Feng, Phytomedicine, 18, 859 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Schulz, C. Boyle, S. Draeger, A. K. Rommert, and K. Krohn, Mycol. Res., 106, 996 (2002).CrossRefGoogle Scholar
  3. 3.
    C. B. Cui, H. Kakeya, and H. Osada, Tetrahedron, 53, 59 (1997).CrossRefGoogle Scholar
  4. 4.
    T. Hino, T. Kawate, and M. Nakagawa, Tetrahedron, 45, 1941 (1989).CrossRefGoogle Scholar
  5. 5.
    W. R. Abraham and H. A. Arfmann, Phytochemistry, 29, 1025 (1990).CrossRefGoogle Scholar
  6. 6.
    T. Onishi, Sebahar, and R. M. Williams, Org. Lett., 60, 9503 (2004).Google Scholar
  7. 7.
    X. Pu, G. Z. Li, Q. Xiao, J. H. Yi, Y. Q. Tian, G. L. Zhang, L. X. Zhao, and Y. G. Luo, Chin. J. Appl. Environ. Biol., 5, 787 (2013).CrossRefGoogle Scholar
  8. 8.
    M. S. Lee, S. W. Wang, G. J. Wang, K. L. Pang, C. K. Lee, Y. H. Kuo, H. J. Cha, R. K. Lin, and T. H. Lee, J. Nat. Prod., 79, 2983 (2016).CrossRefGoogle Scholar
  9. 9.
    T. Yamada, E. Imai, K. Nakatuji, A. Numata, and R. Tanaka, Tetrahedron Lett., 48, 6294 (2007).CrossRefGoogle Scholar
  10. 10.
    H. Fujimoto, E. Negishi, K. Yamaguchi, N. Nishi, and M. Yamazaki, Chem. Pharm. Bull., 44, 1843 (1996).CrossRefGoogle Scholar
  11. 11.
    J. Fotie, D. S. Bohle, M. L. Leimanis, E. Georges, G. Rukunga, and A. E. Nkengfack, J. Nat. Prod., 69, 62 (2006).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, D. H. Li, Z. L. Li, Y. J. Sun, H. M. Hua, T. Liu, and J. Bai, Molecules, 21, E31 (2015).CrossRefGoogle Scholar
  13. 13.
    L. L. Chen, N. Han, Y. C. Wang, T. Huang, R. Xue, and J. Yin, J. Shenyang Pharm. Univ., 28, 875 (2011).Google Scholar
  14. 14.
    Z. D. Yang, J. B. Liang, W. W. Xue, J. Sheng, Y. Shi, X. J. Yao, J. Ren, and L. Liu, Chem. Nat. Compd., 50, 1118 (2014).CrossRefGoogle Scholar
  15. 15.
    I. Orhan, B. Sener, M. I. Choudhary, and A. Khalid, J. Ethnopharmacol., 91, 57 (2004).CrossRefGoogle Scholar
  16. 16.
    F. B. Han, S. W. Lin, P. Liu, X. Liu, J. Tao, X. Deng, C. Yi, and H. Xu, Acs. Med. Chem. Lett., 6, 434 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life Science and EngineeringLanzhou University of TechnologyLanzhouP. R. China

Personalised recommendations