Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 4, pp 770–772 | Cite as

Ecdysteroids of Silene repens from Eastern Siberia

  • D. N. OlennikovEmail author
Article
  • 17 Downloads

The genus Silene L. is represented by ~20 species in Siberia. S. repens Partin (S. amoena L.) is the most common species of the genus in European Russia and Western and Eastern Siberia [1]. Previously, ecdysteroids were found in S. repens introduced to Tomsk Oblast (Russia) and wild plants from Mongolia [2, 3]. The chemical composition of S. repens from natural Siberian populations has not been reported. In continuation of chemical research of Silene species [4, 5], the present communication reports the composition and quantitative contents of ecdysteroids in S. repens specimens growing in the Baikal region.

Plants were collected in the Republic of Buryatia (Bogorodskii Island, Sovetskii District, Russia; 51°47′58.17′′ N, 107°35′17.83′ E; h = 494 m above sea level). The species was determined by Dr. T. A. Aseeva (IGEB, SB, RAS). Raw material was dried in air in the shade to ≤5% moisture and milled to particle size 1–2 mm. Column chromatography (CC) used polyamide, Al2O3, and silica...

Notes

Acknowledgment

The work was sponsored by the Ministry of Science and Higher Education of the Russian Federation (Project No. AAAA-A17-117011810037-0).

References

  1. 1.
    Flora of Siberia, Vol 6, Portulacaceae-Ranunculaceae [in Russian], Nauka, Novosibirsk, 1993.Google Scholar
  2. 2.
    L. Zibareva, V. I. Yeriomina, N. Munkhjargal, J.-P. Girault, L. Dinan, and R. Lafont, Arch. Insect Biochem. Physiol., 72, 234 (2009).CrossRefGoogle Scholar
  3. 3.
    N. Munkhjargal, L. Zibareva, R. Lafont, L. N. Pribytkova, and S. I. Pisareva, Russ. J. Bioorg. Chem., 36, 923 (2010).CrossRefGoogle Scholar
  4. 4.
    D. N. Olennikov and N. I. Kashchenko, Chem. Nat. Compd., 53, 1016 (2017).Google Scholar
  5. 5.
    D. N. Olennikov, Chem. Nat. Compd., 55, 107 (2019).CrossRefGoogle Scholar
  6. 6.
    A. Suksamrarn, B. Yingyongnarongkul, and N. Promrangsan, Tetrahedron, 54, 14565 (1998).CrossRefGoogle Scholar
  7. 7.
    A. Simon, N. Toth, G. Toth, Z. Kele, J. Groska, and M. Bathori, Helv. Chim. Acta, 92, 753 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Vokac, M. Budesinsky, and J. Harmatha, Collect. Czech. Chem. Comm., 67, 124 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Budesinsky, K. Vokac, J. Harmatha, and J. Cvacka, Steroids, 73, 502 (2008).CrossRefGoogle Scholar
  10. 10.
    J. Pis, M. Budesinsky, K. Vokac, V. Laudova, and J. Harmatha, Phytochemistry, 37, 707 (1994).CrossRefGoogle Scholar
  11. 11.
    M. J. Thompson, G. F. Weirich, H. H. Rees, J. A. Svoboda, M. F. Feldlaufer, and K. R. Wilzer, Arch. Insect Biochem. Physiol., 2, 227 (1985).CrossRefGoogle Scholar
  12. 12.
    P. S. Parameswaran, C. G. Nair, C. Gonsalves, and C. T. Achuthankutty, J. Indian Inst. Sci., 81, 169 (2001).Google Scholar
  13. 13.
    J.-P. Girault, M. Bathori, E. Varga, K. Szendrei, and R. Lafont, J. Nat. Prod., 53, 279 (1990).CrossRefGoogle Scholar
  14. 14.
    A. Suksamrarn and P. Pattanaprateep, Tetrahedron, 51, 10633 (1995).CrossRefGoogle Scholar
  15. 15.
    N. Z. Mamadalieva, L. N. Zibareva, Z. Saatov, and R. Lafont, Chem. Nat. Compd., 39, 199 (2003).CrossRefGoogle Scholar
  16. 16.
    N. Z. Mamadalieva, L. N. Zibareva, and Z. Saatov, Chem. Nat. Compd., 38, 268 (2002).CrossRefGoogle Scholar
  17. 17.
    M. Bathori, J.-P. Girault, H. Kalasz, I. Mathe, L. N. Dinan, and R. Lafont, Arch. Insect Biochem. Physiol., 41, 1 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations