Chemistry of Natural Compounds

, Volume 55, Issue 3, pp 586–588 | Cite as

Chemical Constituents of Acridocarpus orientalis and Their Chemotaxonomic Significance

  • Najeeb Ur Rehman
  • Hidayat Hussain
  • Liaqat Ali
  • Amjad Khan
  • Fazal Mabood
  • Zabta Khan Shinwari
  • Javid HussainEmail author
  • Ahmed Al-HarrasiEmail author

Acridocarpus orientalis (Malpighiaceae) consists of 30 species, with 11 widely distributed in Africa, six in Madagascar, and a single species in New Caledonia [1, 2, 3]. It is mainly used in Oman and UAE for the treatment of paralysis, headaches, muscle pain, tendon and joint pains, as well as to treat inflammation in cattle [4, 5, 6]. A. orientalis is a small perennial shrub with highly branched, hairy stems and yellow flowers, which grow in clusters. The air-dried plant material of A. orientalis was collected from Al-Hamra, in the Ad-Dakhiliyah region of the Sultanate of Oman in March–April 2012, and identified by a plant taxonomist at the Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Sultanate of Oman. The voucher specimen (ACO/04/12) has been deposited in the Herbarium of the department.

Previous phytochemical investigations on Acridocarpus vivy revealed the presence of five new and three known triterpenoids [1], while chromatographic separation of Acr...



The authors would like to thank The Oman Research Council (TRC) for financial support under the Open Research Grant (ORG/CBS/12/004).


  1. 1.
    S. Cao, R. C. Guza, J. S. Miller, R. Andriantsiferana, V. E. Rasamison, and D. G. Kingston, J. Nat. Prod., 67, 986 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    T. Ksiksi, C. Guenaoui, and N. Fawzi, Nat. Resour., 3, 1 (2012).Google Scholar
  3. 3.
    T. Ksiksi and A. A. Hamza, Molecules, 17, 12521 (2012).Google Scholar
  4. 4.
    B. C. Bennett and R. Alarcon, Econ. Bot., 48, 152 (1994).CrossRefGoogle Scholar
  5. 5.
    R. A. Monthana, U. Lindequist, R. Gruenert, and P. J. Bednarski, BMC Complement. Altern. Med., 9, 7 (2009).CrossRefGoogle Scholar
  6. 6.
    V. Hammiche and K. Maiza, J. Ethnopharmacol., 105, 358 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    H. M. Malebo, T. Wenzler, M. Cal, S. M. Swaleh, A. Hassanali, A. K. Machocho, U. Sequin, D. Haussinger, P. Dalsgaard, M. O. Omolo, M. Hamburger, R. Brun, and I. O Ndiege, Int. J. Nat. Prod. Res., 3, 74 (2013).Google Scholar
  8. 8.
    J. Hussain, L. Ali, A. L. Khan, N. U. Rehman, F. Jabeen, J. S. Kim, and A. Al-Harrasi, Molecules, 19, 17763 (2014).Google Scholar
  9. 9.
    K. W. Wang, T. T. Zhang, and L. Zhang, Chem. Nat. Compd., 54, 153 (2018).CrossRefGoogle Scholar
  10. 10.
    X. W. Zhang, K. W. Wang, and H. Wang, Chem. Nat. Compd., 54, 803 (2018).CrossRefGoogle Scholar
  11. 11.
    M. Khatun, M. Billah, and M. D. Quader, Dhaka Univ. J. Sci., 60, 5 (2012).CrossRefGoogle Scholar
  12. 12.
    G. A. Seitimova, B. K. Eskalieva, G. S. Burasheva, and M. I. Choudhary, Chem. Nat. Compd., 54, 749 (2018).CrossRefGoogle Scholar
  13. 13.
    C. Kim, H. Im, H. Kim, and H. Huh, Appl. Microbiol. Biotechnol., 56, 239 (2001).CrossRefPubMedGoogle Scholar
  14. 14.
    D. J. Cosgrove, D. G. H. Daniels, E. N. Greer, J. B. Hutchinson, T. Moran, and J. K. Whitehead, Nature, 169, 966 (1952).CrossRefPubMedGoogle Scholar
  15. 15.
    G. A. Usmanova, S. V. Nekhoroshev, M. G. Kulkov, A. V. Nekhorosheva, and E. X. Botirov, Chem. Nat. Compd., 54, 781 (2018).CrossRefGoogle Scholar
  16. 16.
    Y. C. Ge, H. J. Zhang, J. X. Lei, and K. W. Wang, Chem. Nat. Compd., 54, 781 (2018).CrossRefGoogle Scholar
  17. 17.
    A. Tijjani, I. G. Ndukwe, and R. G. Ayo, Trop. J. Pharm. Res., 11, 259 (2012).CrossRefGoogle Scholar
  18. 18.
    P. Ding and K. W. Wang, Chem. Nat. Compd., 54, 393 (2018).CrossRefGoogle Scholar
  19. 19.
    H. S. Jang, S. Y. Choi, B. Jeong, H. J. Min, H. Yang, and Y. S. Bae, Chem. Nat. Compd., 54, 342 (2018).CrossRefGoogle Scholar
  20. 20.
    L. Wu, W. Xiong, J. W. Hu, X. H. Li, J. P. Fu, C. L. Si, and J. Wang, Chem. Nat. Compd., 54, 610 (2018).CrossRefGoogle Scholar
  21. 21.
    A. M. Yang, X. Shi, Z. Zheng, F. Zhang, G. Qi, C. Li, and N. Han, Chem. Nat. Compd., 54, 793 (2018).CrossRefGoogle Scholar
  22. 22.
    S. Tachakittirungrod, F. Ikegami, and S. Okonogi, Sci. Pharm., 75, 179 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Z. Lu, Y. L. Wang, Z. X. Lou, J. Y. Zu, H. Q. Liang, and Z. L. Zhou, Acta Pharm. Sinic., 18, 199 (1983).Google Scholar
  24. 24.
    C. T. Yen, P. W. Hsieh, T. L. Hwang, Y. H. Lan, F. R. Chang, and Y. C. Wu, Chem. Pharm. Bull., 57, 280 (2009).CrossRefPubMedGoogle Scholar
  25. 25.
    S. Uddin, L. Alnsour, P. Segun, H. Servi, S. Celik, R. S. Gokturk, A. Al-Groshi, S. Al-Majmaie, S. T. Guetchueng, L. Nahar, N. M. Dempster, F. M. D. Ismail, K. J. Ritchie, and S. D. Sarker, Trends Phytochem. Res., 1, 243 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Najeeb Ur Rehman
    • 1
  • Hidayat Hussain
    • 1
    • 2
  • Liaqat Ali
    • 1
    • 3
  • Amjad Khan
    • 4
  • Fazal Mabood
    • 5
  • Zabta Khan Shinwari
    • 4
  • Javid Hussain
    • 5
    Email author
  • Ahmed Al-Harrasi
    • 1
    Email author
  1. 1.Natural and Medical Sciences Research CenterUniversity of NizwaNizwaSultanate of Oman
  2. 2.Department of Bioorganic ChemistryLeibniz Institute of Plant BiochemistryHalle (Salle)Germany
  3. 3.Department of ChemistryUniversity of SargodhaMianwaliPakistan
  4. 4.Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan
  5. 5.Department of Biological Sciences and Chemistry, College of Arts and SciencesUniversity of NizwaNizwaOman

Personalised recommendations