Advertisement

Chemical Constituents of Fruit Body of Armillaria luteo-virens

  • Lijin Jiao
  • Yanduo Tao
  • Weidong Wang
  • Lijuan Mei
  • Yun Shao
  • Qilan WangEmail author
  • Jun DangEmail author
Article
  • 9 Downloads

Armillaria luteo-virens, also known as “Huang Mo Gu,” is a special medicinal and edible mushroom in northwest of China. This fungus is mainly distributed in the meadow and grassland of Qinghai-Tibet plateau and used as traditional Chinese medicine for the treatment of headache, neurasthenia, insomnia, and infantile convulsion [1]. Modern studies have demonstrated that A. luteo-virens possesses antitumor [2] and antioxidant [3] activities. However, studies on the chemical constituents of A. luteo-virens are very limited. According to previous studies, only three reports on the chemical constituents of A. luteo-virens have been reported [2, 4, 5]. In this paper, we report the isolation and structural elucidation of 13 known compounds (1–13); nine of these compounds (1–3, 8–13) were isolated for the first time from the fruiting bodies of A. luteo-virens. The structures of all isolated compounds were characterized by ESI-MS and 1H and 13C NMR spectroscopy.

The fruiting bodies of A. luteo-virens...

Notes

Acknowledgment

This research was sponsored by the Application Foundation Research Project (2017-ZJ-785), Project of Discovery, Evaluation and Transformation of Active Natural Compounds, Strategic Biological Resources Service Network Programme of Chinese Academy of Sciences (ZSTH-027), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2017471) and the Significant Science & Technological Project of Qinghai Province (2014-GX-A3A).

References

  1. 1.
    H. Y. Xiong, D. Q. Fei, J. S. Zhou, C. J. Yang, and G. L. Ma, Chem. Nat. Compd., 45, 759 (2009).CrossRefGoogle Scholar
  2. 2.
    S. F. Li, G. C. Chen, and Y. R. Bi, Edible Fungi Chin., 24, 58 (2005).Google Scholar
  3. 3.
    Y. C. Jiao, M. Yu, and D. Tang, Food. Res. Dev., 31, 156 (2010).Google Scholar
  4. 4.
    J. S. Song, Y. H. Xiong, C. J. Yang, Y. C. Jiao, and H. Y. Sheng, J. Anhui Agric. Sci., 36, 840 (2008).Google Scholar
  5. 5.
    M. Lin, Y. Z. Zhang, and J. Dang, J. Chin. Pharm. Univ., 47, 291 (2016).Google Scholar
  6. 6.
    H. L. Zheng, G. R. Tuli, H. Y. Bao, and J. W. Lian, Chin. J. Chin. Mater. Med., 38, 4335 (2013).Google Scholar
  7. 7.
    Z. H. Zhang, Z. Dai, X, J. Hu, and R. C. Lin, J. Chin. Med. Mater., 36, 1620 (2013).Google Scholar
  8. 8.
    K. Hong, X. Xie, X. J. Wang, J. C. Liu, W. Z. Huang, Z. Z. Wang, and W. Xiao, Chin. Trad. Herb. Drugs, 45, 3071 (2014).Google Scholar
  9. 9.
    J. Liu, Z. B. Yu, Y. H. Ye, and Y. W. Zhou, Acta Pharm. Sin., 43, 181 (2008).Google Scholar
  10. 10.
    L. Y. Zhao, W. Zuo, Q. B. Fu, L. J. Zhao, W. N. Zhu, and D. Q. Luo, Chin. Trad. Herb. Drugs, 41, 1064 (2010).Google Scholar
  11. 11.
    V. B. Adsul, E. Khatiwora, R. C. Torane, and N. R. Deshpande, Chem. Nat. Compd., 48, 712 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Ragasa, M. C. S. Tan, M. E. G. D. Castro, J. Perez, and C. C. Shen, Int. J. Toxicol. Pharmacol. Res., 8, 421 (2016).Google Scholar
  13. 13.
    N. Fangkrathok, B. Sripanidkulchai, K. Umehara, and H. Noguchi, Nat. Prod. Res., 27, 1611 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Li, Y. A. Li, J. Xu, X. L. Tang, P. L. Li, and G. Q. Li, Chin. J. Mar. Drugs, 30, 31 (2011).Google Scholar
  15. 15.
    M. Ono, Y. Ito, T. Ishikawa, J. Kitajima, Y. Tanaka, Y. Niiho, and T. Nohara, Chem. Pharm. Bull., 27, 337 (1995).Google Scholar
  16. 16.
    J. H. Wang, J. I. Ming-Hui, H. M. Shu, G. Y, Chen, X. P. Song, and J. Wang, Chin. J. Nat. Med., 10, 303 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations