Advertisement

Chemical Constituents of Mentha haplocalyx

  • Lei Su
  • Yue-ming Wang
  • Kun-rui Zhong
  • Guang-zhong Tu
  • Yan-yan JiangEmail author
  • Bin LiuEmail author
Article
  • 3 Downloads

Mentha haplocalyx Briq. belongs to the genus Mentha (family Labiatae). Its aerial parts are used as traditional medicine in China for the treatment of the common cold, headache, aphtha, rubella, measles, and inflammatory diseases [1, 2]. The chemical and biological investigation of the constituents of M. haplocalyx have been actively studied, as represented by [3, 4, 5, 6]. During our previous phytochemical investigation of this plant, we have reported several phenylpropanoids, monoterpenoids, polyphenolic acids, and flavonoids from the aqueous extract of M. haplocalyx. To discover more interesting molecules from M. haplocalyx, a phytochemical investigation was carried out. Our current chemical analysis of the 70% ethanol extract of the aerial parts of M. haplocalyx has led to 19 compouds, including six terpenoid glycosides, which were the representative and potential bioactive chemical constituents of the family Labiatae [7, 8, 9], six flavonoids, three phenylpropanoids, two phenolic...

Notes

Acknowledgment

This work was financially supported by the following grants: National Natural Science Foundation of China (No. 81173520), the Research Fund for the Doctoral Program of Higher Education of China (No. 20100013110002), and the Research Fund for Self-Selected Topic of Beijing University of Chinese Medicine (No. 0100600122).

References

  1. 1.
    China Pharmacopoeia Committee, Pharmacopoeia of Peoples Republic of China, Vol. 1, Beijing, 2015, 377 pp.Google Scholar
  2. 2.
    Z. Y. Wu, Flora of China, Beijing, 2005, 262 pp.Google Scholar
  3. 3.
    G. M. She, C. Xu, and B. Liu, Briq. Chem. Cent. J., 6 (1), 37 (2012).Google Scholar
  4. 4.
    G. M. She, C. Xu, and B. Liu, Chem. Nat. Compd., 48, 1083 (2012).Google Scholar
  5. 5.
    G. M. She, C. Xu, B. Liu, and R. B. Shi, Helv. Chim. Acta, 93 (12), 2495 (2010).CrossRefGoogle Scholar
  6. 6.
    G. M. She, C. Xu, B. Liu, and R. B. Shi, J. Food Sci., 75 (4), 359 (2010).CrossRefGoogle Scholar
  7. 7.
    W. B. Ding, L. D. Lin, M. F. Liu, and X. Y. Wei, J. Asian Nat. Prod. Res., 13 (7), 599 (2011).CrossRefGoogle Scholar
  8. 8.
    M. Kuroda, K. Iwabuchi, and Y. Mimaki, Nat. Prod. Commun., 7 (4), 471 (2012).Google Scholar
  9. 9.
    H. D. Sun, S. X. Huang, and Q. B. Han, Nat. Prod. Rep., 23 (5), 673 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Nakamura, S. Sugimoto, H. Matsuda, and M. Yoshikawa, Chem. Pharm. Bull., 55 (9), 1342 (2007).CrossRefGoogle Scholar
  11. 11.
    M. N. Samy, S. Sugimoto, K. Matsunami, H. Otsuka, and M. S. Kamel, J. Nat. Prod., 7, 37 (2014).Google Scholar
  12. 12.
    W. S. Feng, X. Y. Zang, X. K. Zheng, Y. Z. Wang, H. Chen, and Z. Li, J. Asian Nat. Prod. Res., 12 (7), 557 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Kizu, H. Shimana, and T. Tomimori, Chem. Pharm. Bull., 43 (12), 2187 (1995).CrossRefGoogle Scholar
  14. 14.
    K. Matsunami, H. Otsuka, Y. Takeda, and T. Miyasec, Chem. Pharm. Bull., 58 (10), 1399 (2010).Google Scholar
  15. 15.
    Y. Champavier, G. Comte, J. Vercauteren, D. P. Allais, A. J. Chulia, and A. J. Chuliaa, Phytochemistry, 50, 1219 (1999).Google Scholar
  16. 16.
    P. N. Bandeira, O. D. L. Pessoa, M. T. S. Trevisan, and T. L. G. Lemos, Quim. Nova, 25 (6b), 1078 (2002).CrossRefGoogle Scholar
  17. 17.
    H. S. Kang, H. Y. Chung, D. S. Byun, and J. S. Choi, Arch. Pharm. Res., 26 (1), 24 (2003).CrossRefGoogle Scholar
  18. 18.
    H. Ando, Y. Hirai, M. Fujii, Y. Hori, M. Fukumura, Y. Niiho, Y. Nakajima, T. Shibata, K. Toriizuka, and Y. Ida, J. Nat. Med., 61 (3), 269 (2007).CrossRefGoogle Scholar
  19. 19.
    H. Tsukamoto, S. Hisada, and S. Nishibe, Chem. Pharm. Bull., 32 (7), 2730 (1984).CrossRefGoogle Scholar
  20. 20.
    H. Otsuka, Phytochemistry, 37 (2), 461 (1994).CrossRefGoogle Scholar
  21. 21.
    Y. Sun, S. Gu, L. Guo, X. Xia, H. Zhang, and J. Wang, J. Sep. Sci., 37 (13), 1703 (2014).CrossRefGoogle Scholar
  22. 22.
    S. Shrestha, D. Lee, J. Park, J. Cho, W. Seo, H. C. Kang, Y. Jeon, S. Yeon, M. Bang, and N. Baek, J. Korean Soc. Appl. Biol. Chem., 55 (5), 689 (2012).CrossRefGoogle Scholar
  23. 23.
    R. M. Liu, L. Y. Kong, A. F. Li, and A. L. Sun, J. Liq. Chromatogr. Relat. Technol., 30 (4), 521 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Zhou, Y. Wang, R. F. Wang, F. Guo, and C. Yan, J. Sep. Sci., 31 (13), 2388 (2008).CrossRefGoogle Scholar
  25. 25.
    O. S. Chaves, R. A. Gomes, A. C. Tomaz, M. G. Fernandes, G. M. L. J. Das, A. M. de Fatima, V. A. Braga, and V. D. S. M. de Fatima, Molecules, 18 (3), 2769 (2013).CrossRefGoogle Scholar
  26. 26.
    M. S. Han, I. K. Lee, Y. S. Kim, J. T. Kim, K. R. Choe, and B. S. Yun, J. Korean Soc. Appl. Biol. Chem., 53 (4), 512 (2010).CrossRefGoogle Scholar
  27. 27.
    R. W. Owen, R. Haubner, W. Mier, A. Giacosa, W. E. Hull, B. Spiegelhalder, and H. Bartsch, Food Chem. Toxicol., 41 (5), 703 (2003).CrossRefGoogle Scholar
  28. 28.
    H. S. Lee, J. S. Yu, and C. K. Lee, Magn. Reson. Chem., 47 (9), 711 (2009).CrossRefGoogle Scholar
  29. 29.
    I. C. Lee, J. S. Bae, T. Kim, O. J. Kwon, and T. H. Kim, J. Korean Soc. Appl. Biol. Chem., 54 (5), 811 (2011).CrossRefGoogle Scholar
  30. 30.
    H. H. Xie, X. Y. Xu, Y. Dan, and X. Y. Wei, Chin. J. Nat. Med., 7 (5), 390 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chinese PharmacyBeijing University of Chinese MedicineBeijingP. R. China
  2. 2.Beijing Institute of MicrochemistryBeijingP. R. China

Personalised recommendations