Phenylpropanoid Glycosides and Flavonolignans from Lancea tibetica

  • Weidong Wang
  • Yanduo Tao
  • Lijin Jiao
  • Yun Shao
  • Qilan Wang
  • Lijuan MeiEmail author
  • Jun DangEmail author

Lancea tibetica is a well-known traditional Chinese herb used for the prevention and treatment of leukemia, intestinal angina, heart disease, and cough [1]. Modern studies have demonstrated that L. tibetica possesses antithrombotic, antitumor, antioxidant, and antiviral activities [2, 3]. Our phytochemical research on L. tibetica led to the isolation and identification of 12 compounds, including nine phenylpropanoid glycosides (1–4, 8–12) and three flavonolignans (5–7). Compounds (1–9), parvifloroside A (1), acteoside (2), isoacteoside A (3), leucoseptoside A (4), sinaiticin (5), anthelminthicol A (6), hydnocarpin-D (7), styraxjaponoside C (8), and 1-O-feruloyl-β-D-glucopyranose (9), have not been recorded in Lancea genus previously. Compounds (10–12), phillyrin (10), lantibeside (11), and lantibeside B (12), have been isolated from L. tibetica previously [4]. The structures of all isolated compounds were elucidated via comparison of their spectroscopic data (ESI-MS, 1H NMR and 13C...



This research was sponsored by the Project of Discovery, Evaluation and Transformation of Active Natural Compounds, Strategic Biological Resources Service Network Programme of Chinese Academy of Sciences (ZSTH-027), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2017471) and the Significant Science & Technological Project of Qinghai Province (2014-GX-A3A).


  1. 1.
    Z. H. Song, Y. H. Wang, Z. Z. Qian, T. J. Smile, and I. A. Khan, Planta Med., 77, 1562 (2011).CrossRefGoogle Scholar
  2. 2.
    R. D. Zhen, M. T. Wang, and H. D. Zhang, Acta Bot. Sin., 27, 402 (1985).Google Scholar
  3. 3.
    C. Liu, S. J. Liu, Z. S. Tang, and J. Y. Sun, Phytochem. Lett., 14, 270 (2015).CrossRefGoogle Scholar
  4. 4.
    T. Li, X. J. Hao, Q. Q. Gu, and W. M. Zhu, Planta Med., 74, 1391 (2008).CrossRefGoogle Scholar
  5. 5.
    L. D. S. Juliao, A. L. Piccinelli, S. Marzocco, S. G. Leitao, C. Lotti, G. Autore, and L. Rastrelli, J. Nat. Prod., 72, 1424 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Wu, S. Zhang, Q. Xiao, Q. X. Li, J. S. Huang, L. J. Long, and L. M. Huang, Phytochemistry, 63, 491 (2003).CrossRefGoogle Scholar
  7. 7.
    C. Phakeovilay, W. Disadee, P. Sahakipichan, and T. Kanchanapoom, J. Nat. Med., 67, 228 (2013).CrossRefGoogle Scholar
  8. 8.
    F. P. Sahin, N. Ezer, and Z. Calis, Phytochemistry, 65, 2095 (2004).CrossRefGoogle Scholar
  9. 9.
    M. S. A. Afifi, M. M. Ahmed, J. M. Pezzuto, and A. D. Kinghorn, Phytochemistry, 34, 839 (1993).CrossRefGoogle Scholar
  10. 10.
    J. F. Wang, G. F. Yin, X. J. Zhou, J. Su, Y. Li, H. M. Zhong, G. Dang, and Y. X. Cheng, J. Asian. Nat. Prod. Res., 13, 80 (2011).CrossRefGoogle Scholar
  11. 11.
    N. P. Cuz and F. R. Stermitz, J. Nat. Prod., 63, 1140 (2000).CrossRefGoogle Scholar
  12. 12.
    M. R. Kim, H. Y. Moon, D. G. Lee, and E. R. Woo, Arch. Pharm. Res., 30, 425 (2007).CrossRefGoogle Scholar
  13. 13.
    N. Bai, K. He, M. Roller, C. S. Lai, X. Shao, M. H. Pan, and C. T. Ho, J. Agric. Food Chem., 58, 5363 (2010).CrossRefGoogle Scholar
  14. 14.
    J. H. Kwak, M. W. Kang, J. H. Roh, S. U. Choi, and O. P. Zee, Arch. Pharm. Res., 32, 1681 (2009).CrossRefGoogle Scholar
  15. 15.
    R. D. Zhen, M. T. Zhang, and H. D. Zhang, J. Integr. Plant Biol., 27, 402 (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations