Advertisement

Chemistry of Natural Compounds

, Volume 55, Issue 1, pp 11–17 | Cite as

Synthesis and Antiproliferative Activity of Natural and Non-Natural Polymethoxychalcones and Polymethoxyflavones

  • Kingsadingthongkham Vongdeth
  • Peipei Han
  • Wei Li
  • Qiu-An WangEmail author
Article
  • 14 Downloads

Two series of polymethoxychalcones and polymethoxyflavones, including the natural products 2′-hydroxy-3,4,5,4′,6′-pentamethoxychalcone (8c), 5,6,7,8,3′,4′,5′-heptamethoxyflavone (6), 5,7,3′,4′,5′-pentamethoxyflavone (9c), 3-hydroxy-5,6,7,8,3′,4′,5′-heptamethoxyflavone (7), and 3-hydroxy-5,7,3′,4′,5′-pentamethoxyflavone (10), were synthesized. The antiproliferative activity in vitro was evaluated against a panel of three human cancer cell lines (HeLa, HCC1954, and SK-OV-3) by the cell counting kit-8 (CCK-8) assay. The results showed that most of the synthetic compounds exhibited moderate to potent antiproliferative activities. Some compounds displayed equal or higher potential than the positive control drug cisplatin. In particular, compounds 4c, 4e, 8a, and 9a possess IC50 values equal to or below 10 μM and are worthy of further investigation.

Keywords

polymethoxychalcone polymethoxyflavone synthesis antiproliferative activity 

Notes

Acknowledgment

We thank the National Natural Science Foundation of China (No. J1210040, 21173074) for financial support.

References

  1. 1.
    M. Singh, M. Kaur, and O. Silakari, Eur. J. Med. Chem., 84, 206 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Yanqing, D. Wei, L. Chunbo, L. Ping, S. Qinpeng, Y. Juanxia, W. Yuede, Z. Kun, J. Bingkun, G. Xuemei, Z. Min, and H. Qiufen, Chem. Nat. Compd., 52, 359 (2016).CrossRefGoogle Scholar
  3. 3.
    T. K.-D. Hoang, T. K.-C. Huynh, and T. -D. Nguyen, Bioorg. Chem., 63, 45 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Mahapatra, S. K. Bharti, and V. Asati, Eur. J. Med. Chem., 98, 69 (2015).CrossRefGoogle Scholar
  5. 5.
    N. Bathelemy, W. F. Ghislain, A. Pantaleon, K. Justin, D. Arif, and T. N. Bonaventure, Chem. Nat. Compd., 53, 207 (2017).Google Scholar
  6. 6.
    Y. Miyata, T. Sshitari, Y. Okuyama, A. Schimada, H. Takahashi, H. Natsugari, and H. Kosano, Bioorg. Med. Chem. Lett., 23, 183 (2013).CrossRefGoogle Scholar
  7. 7.
    B. P. Bandgar, S. S. Gawande, R. G. Bodade, and J. V. Totre, Bioorg. Med. Chem., 18, 1364 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Walle, N. Ta, T. Kawamori, X. Wen, P. A. Tsuji, and V. Walle, Pharmacology, 73, 1288 (2007).Google Scholar
  9. 9.
    S. Kawaii, T. Ikuina, T. Hikima, T. Tokiwano, and Y. Yoshizawa, Anticancer Res., 32, 5239 (2012).Google Scholar
  10. 10.
    S. Li, M.-H. Pan, C.-S. Lai, C.-Y. Lo, S. Dushenkov, and C.-T. Ho, Bioorg. Med. Chem., 15, 3381 (2007).CrossRefGoogle Scholar
  11. 11.
    V.-S. Nguyen, L. Shi, F.-Q. Luan, and Q.-A. Wang, Acta Biochim. Pol., 62, 547 (2015).CrossRefGoogle Scholar
  12. 12.
    V.-S. Nguyen, W. Li, Y. Li, and Q.-A. Wang, Med. Chem. Res., 26, 1585 (2017).CrossRefGoogle Scholar
  13. 13.
    V.-S. Nguyen, L. Shi, S.-C. Wang, and Q.-A. Wang, Anti-cancer Agents Med. Chem., 17, 134 (2016).CrossRefGoogle Scholar
  14. 14.
    A. Miroslaw, S. Katarzyna, and Z. Anna, Tetrahedron, 64, 9544 (2008).CrossRefGoogle Scholar
  15. 15.
    P. N. Marta, T. L. Raquel, C. Kanthima, P. Panee, S. J. N. Maria, V. M. Helena, P. Madalena, M. S. S. Artur, and C. Honorina, Chem. Biodivers., 9, 1133 (2012).CrossRefGoogle Scholar
  16. 16.
    L.-V. Ngo and T. V. C. Pham, Phytochemistry, 18, 1859 (1979).CrossRefGoogle Scholar
  17. 17.
    M. J. Mashimbye, P. Soundy, and R. T. Van, J. Chem., 59, 1 (2006).Google Scholar
  18. 18.
    K. Takeshi and F. Kurnia, Phytochemistry, 45, 179 (1997).CrossRefGoogle Scholar
  19. 19.
    S. L. Cai, S. Liu, L. Liu, and Q. A. Wang, Chem. Res. Chin. Univ., 28, 631 (2012).Google Scholar
  20. 20.
    A. Detsi, M. Majdalani, C. A. Kontogiorgis, H. L. Dimitra, and P. Kefalas, Bioorg. Med. Chem., 17, 8073 (2009).CrossRefGoogle Scholar
  21. 21.
    Q. A. Wang, Z. Wu, L. Liu, L. H. Zou, and M. Luo, Chin. J. Org. Chem., 30, 1682 (2010).Google Scholar
  22. 22.
    M. Tsukayama, E. Kusunoki, and M. M. Hossain, Heterocycles, 71, 1589 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. P. Song, Z. Y. Xin, Y. M. Wan, J. B. Li, B. P. Ye, and X. W. Xue, Eur. J. Med. Chem., 90, 695 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kingsadingthongkham Vongdeth
    • 1
    • 2
  • Peipei Han
    • 1
  • Wei Li
    • 1
  • Qiu-An Wang
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
  2. 2.Department of Chemistry, Faculty of Natural SciencesNational University of LaosVientiane CapitalLao PDR

Personalised recommendations