Advertisement

Flavanones and Flavones from Bashkir Propolis

  • R. A. Zainullin
  • R. V. Kunakova
  • V. F. Gareev
  • I. V. Galyautdinov
  • Z. R. Sadretdinova
  • Z. S. Muslimov
  • V. N. Odinokov
Article
  • 11 Downloads

Propolis is a product of the honey bee Apis mellifera and has a broad spectrum of biological activity (antimicrobial, antifungal, antitumor, antineurodegenerative, anti-inflammatory, antioxidant, cytotoxic, antituberculosis, antiviral, and immunomodulating [1]) that is widely employed in traditional [2, 3] and folk medicine [4].

Greater than 500 compounds [5], of which more than 150 were flavonoids [6], were identified in the constituents of propolis depending on the geographic location, bee species, and plants.

The chemical composition of Bashkir propolis produced by A. mellifera from plants of the southern Urals (Bashkiria) was studied by us for the first time. Pure flavanones 14 and flavones 5 and 6 were isolated and identified.

Notes

Acknowledgment

The work was financially supported by the Russian Foundation for Basic Research and the Academy of Sciences of the Republic of Bashkortostan (Project No. 17-43-020483 p_a). Structures of compounds were established using PMR and 13C NMR spectra with 2D experiments (COSY, HSQC, HMBC, NOESY) and MALDI TOF/TOF mass spectra obtained at the Agidel Common Use Center at the IPC, RAS.

References

  1. 1.
    S. Almutairi, R. Edrada-Ebel, J. Fearnley, J. O. Ogoli, W. Alotabi, C. J. Clements, A. I. Gray, and D. G. Watson, Phytochem. Lett., 10, 160 (2014).CrossRefGoogle Scholar
  2. 2.
    M. A. E. Watanabe, M. K. Amarante, B. J. Conti, and J. M. Sforcin, J. Pharm. Pharmacol., 63, 1378 (2011).CrossRefPubMedGoogle Scholar
  3. 3.
    M. P. Popova, K. Graikou, I. Chikon, and V. S. Bankova, J. Agric. Food Chem., 58, 3167 (2010).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Petrova, M. Popova, C. Kuzmanova, I. Tsvetkova, H. Naydenski, E. Muli, and V. Bankova, Fitoterapia, 81, 509 (2010).CrossRefPubMedGoogle Scholar
  5. 5.
    J. M. Alvarez-Suarez, Bee Products – Chemical and Biological Properties, Springer International Publishing AG, 2017, pp. 99–111.Google Scholar
  6. 6.
    Sh. Huang, C.-P. Zang, K. Wang, G. Q. Li, and F.-L. Hu, Molecules, 19, 19610 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    B.-N. Su, E. J. Park, J. S. Vigo, J. G. Graham, F. Cabieses, H. H. S. Fong, J. M. Pezzuto, and A. D. Kinghorn, Phytochemistry, 63, 335 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    A. G. Gonzalez, Z. E. Aguiar, J. G. Luis, A. G. Ravelo, J. T. Vazquez, and X. A. Dominguez, Phytochemistry, 28, 2871 (1989).CrossRefGoogle Scholar
  9. 9.
    K. Ichino, H. Tanaka, and K. Ito, Tetrahedron, 44, 3251 (1988).CrossRefGoogle Scholar
  10. 10.
    H. Haberlein and K.-P. Tschiersch, Phytochemistry, 35, 765 (1994).CrossRefGoogle Scholar
  11. 11.
    J.-Q. Gu, E. J. Park, J. S. Vigo, J. G. Graham, H. H. S. Fong, J. M. Pezzuto, and A. D. Kinghorn, J. Nat. Prod., 65, 1616 (2002).CrossRefPubMedGoogle Scholar
  12. 12.
    N. M. Cuong, T. V. Sung, C. Kamperdick, and G. Adam, Pharmazie, 51, 128 (1996).Google Scholar
  13. 13.
    M. G. Carvalho, D. C. Cranchi, and A. G. Carvalho, J. Braz. Chem. Soc., 7, 187 (1996).CrossRefGoogle Scholar
  14. 14.
    V. I. Yamovoi, E. A. Kulmagambetova, A. T. Kulyyasov, K. M. Turdybekov, and S. M. Adekenov, Chem. Nat. Compd., 37, 424 (2001).CrossRefGoogle Scholar
  15. 15.
    K. J. Hodgetts, Tetrahedron, 61, 6860 (2005).CrossRefGoogle Scholar
  16. 16.
    T. Korenada, K. Hayashi, Y. Kaki, R. Maenishi, and T. Sakai, Org. Lett., 13, 2022 (2011).CrossRefGoogle Scholar
  17. 17.
    J. McNulty, J. J. Nair, E. Bollareddy, K. Keskar, A. Thorat, D. J. Crankshaw, A. C. Holloway, G. Khan, G. D. Wright, and L. Ejim, Phytochemistry, 70, 2040 (2009).CrossRefPubMedGoogle Scholar
  18. 18.
    D. Bertelli, G. Papotti, L. Bortolotti, G. L. Marcazzan, and M. Plessi, Phytochem. Anal., 23, 260 (2012).CrossRefPubMedGoogle Scholar
  19. 19.
    G. Jerz, R. Waibel, and H. Achenbach, Phytochemistry, 66, 1698 (2005).CrossRefPubMedGoogle Scholar
  20. 20.
    S. Grecco, A. C. Dorigueto, I. M. Landre, M. G. Soares, K. Martho, R. Lima, R. C. Pascon, M. A. Vallim, T. M. Capello, P. Romoff, P. Sartorelli, and J. H. G. Lago, Molecules, 19, 7528 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Grecco, J. Q. Reimao, A. G. Tempone, P. Sartorelli, R. L. O. R. Cunha, P. Romoff, M. J. P. Ferreira, O. A. Favero, and J. H. G. Lago, Exp. Parasitol., 130, 141 (2012).CrossRefGoogle Scholar
  22. 22.
    J.-M. Fang, W. Ch. Su, and Y.-Sh. Cheng, Phytochemistry, 27, 1385 (1988).Google Scholar
  23. 23.
    V. A. Kurkin, G. G. Zapesochnaya, and V. B. Braslavskii, Chem. Nat. Compd., 26, 224 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. A. Zainullin
    • 1
  • R. V. Kunakova
    • 1
  • V. F. Gareev
    • 1
  • I. V. Galyautdinov
    • 2
  • Z. R. Sadretdinova
    • 2
  • Z. S. Muslimov
    • 2
  • V. N. Odinokov
    • 2
  1. 1.Ufa State Petroleum Technological UniversityUfaRussia
  2. 2.Institute of Petrochemistry and CatalysisRussian Academy of SciencesUfaRussia

Personalised recommendations