Chemistry of Natural Compounds

, Volume 54, Issue 4, pp 821–825 | Cite as

Absolute Configuration of (2R,3R,6S,8R)-Methyl Homononactate, a Polyketide from Actinomycetes Streptomyces sp. R-527F of the Arctic Region

  • Fei Ye
  • Meng-Hao Cai
  • Bo Chen
  • Wei Xiao
  • Xu-Wen Li
  • Yue-Wei Guo

Since the first report of the discovery and separation of microbes by Ekelof in the Antarctic region in 1908, the microbiological, ecological, and chemical studies of the strains from polar regions have become a hotspot due to the special living environments of the microorganisms, such as extremely low temperature, high salinity, and intense radiation [1, 2]. Diverse natural products, such as terpenoids, alkaloids, and polyketides, with a wide range of biological activities, including cytotoxicity, antiviral activity, etc., were found from microbes of the polar regions [3, 4]. Among them, macrotetrolide type polyketides have attracted a lot of attention thanks to their high chemical complexity and biological diversity [5, 6, 7]. In fact, macrotetrolides are a family of cyclic polyethers biosynthetically derived from several molecules of enantiomeric nonactic acid or its homologs with a (+)(–)(+)(–)-ester connection, an intriguing molecular topology seldom observed in other natural...



This research work was financially supported by the Natural Science Foundation of China (Nos. 81520108028, 81273430, 41306130, 81302692, 41676073, 81603022), SCTSM Project (Nos. 14431901100, 15431901000), Institutes for Drug Discovery and Development, Chinese Academy of Sciences (No. CASIMM0120152039), and the SKLDR/SIMM Projects (SIMM 1501ZZ-03). X.-W. Li acknowledges the financial support of the “Youth Innovation Promotion Association” (Grant No. 2016258) from the Chinese Academy of Sciences, the “Young Talent Supporting Project” from the China Association for Science and Technology, and the Shanghai “Pujiang Program.” F. Ye acknowledges the financial support of the Syngenta-SIMM-PhD Studentship Project.


  1. 1.
    W. F. Vincent, Microbial Ecosystems of Antarctica, Cambridge University Press, 1988.Google Scholar
  2. 2.
    Y.-X. Zeng and B. Chen, Chin. J. Polar Res., 11, 143 (1999).Google Scholar
  3. 3.
    N. B. Perry, L. Ettouati, M. Litaudon, J. W. Blunt, M. H. G, Munro, S. Parkin, and H. Hope, Tetrahedron, 50, 3987 (1994).Google Scholar
  4. 4.
    G. S. Jayatilake, M. P. Thornton, A. C. Leonard, J. E. Grimwade, and B. J. Baker, J. Nat. Prod., 59, 293 (1996).CrossRefPubMedGoogle Scholar
  5. 5.
    K. Ando, Y. Murakami, and Y. Nawata, J. Antibiot., 24, 418 (1971).CrossRefPubMedGoogle Scholar
  6. 6.
    J. Berdy, Handbook of Antibiotic Compounds, CRC Press, Boca Raton, 1980.Google Scholar
  7. 7.
    T. L. Simmons, E. Andrianasolo, K. McPhail, P. Flatt, and W. H. Gerwick, Mol. Cancer Ther., 4, 333 (2005).PubMedGoogle Scholar
  8. 8.
    M. E. Nelson and N. D. Priestley, J. Am. Chem. Soc., 124, 2894 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    Z.-F. Zhou, T. Kurtan, X.-H. Yang, A. Mandi, M.-Y. Geng, B.-P. Ye, O. Taglialatela-Scafati, and Y.-W. Guo, Org. Lett., 16, 1390 (2014).CrossRefPubMedGoogle Scholar
  10. 10.
    Z.-F. Zhou, X.-H. Yang, H.-L. Liu, Y.-C. Gu, B.-P. Ye, and Y.-W. Guo, Helv. Chim. Acta, 97, 1564 (2014).CrossRefGoogle Scholar
  11. 11.
    A. F. Barrero, D. M. J. Quilez, A. Lara, and M. M. Herrador, Planta Med., 71, 67 (2005).CrossRefPubMedGoogle Scholar
  12. 12.
    D. Niederer, C. Tamm, and W. Zurcher, Tetrahedron Lett., 33, 3997 (1992).CrossRefGoogle Scholar
  13. 13.
    H. Kries, R. Wachtel, A. Pabst, B. Wanner, D. Niquille, and D. Hilvert, Angew. Chem. Int. Ed., 53, 10105 (2014).CrossRefGoogle Scholar
  14. 14.
    O. I. Zhuravleva, E. V. Leshchenko, S. S Afiyatullov, M. P. Sobolevskaya, V. A. Denisenko, and L. S. Shevchenko, Chem. Nat. Compd., 47, 494 (2011).Google Scholar
  15. 15.
    G.-Z. Ding, J. Liu, J.-M. Wang, L. Fang, and S.-S. Yu, J. Asian Nat. Prod. Res., 15, 446 (2013).CrossRefPubMedGoogle Scholar
  16. 16.
    Y. Takaya, T. Furukawa, S. Miura, T. Akutagawa, Y. Hotta, N. Ishikawa, and M. Niwa, J. Agric. Food Chem., 55, 75 (2007).CrossRefPubMedGoogle Scholar
  17. 17.
    S. Mehnaz, R. S. Z. Saleem, B. Yameen, I. Pianet, G. Schnakenburg, H. Pietraszkiewicz, F. Valeriote, M. Sahl H. G. Josten, S. G. Franzblau, and H. Gross, J. Nat. Prod., 76, 135 (2013).CrossRefPubMedGoogle Scholar
  18. 18.
    V. Prikrylova, M. Beran, P. Sedmera, and J. Jizba, Folia. Microbiol., 39, 191 (1994).CrossRefGoogle Scholar
  19. 19.
    B. Lygo, Tetrahedron, 44, 6889 (1988).CrossRefGoogle Scholar
  20. 20.
    T. Rezanka, J. Spizek, V. Prikrylova, A. Prell, and V. M. Dembitsky, Tetrahedron, 60, 4781 (2004).CrossRefGoogle Scholar
  21. 21.
    R. D. Walkup and G. Park, J. Am. Chem. Soc., 112, 1597 (1990).CrossRefGoogle Scholar
  22. 22.
    X.-W. Li, L. Weng, X. Gao, Y. Zhao, F. Pang, J.-H. Liu, H.-W. Zhang, and J.-F Hu, Bioorg. Med. Chem. Lett., 21, 366 (2011).Google Scholar
  23. 23.
    I. Ohtani, T. Kusumi, Y. Kashman, and H. Kakisawa, J. Am. Chem. Soc., 113, 4092 (1991).CrossRefGoogle Scholar
  24. 24.
    J.-Q. Yuan, X.-Z. Yang, J.-H. Miao, C.-P. Tang, C.-Q. Ke, J.-B. Zhang, X.-J. Ma, and Y. Yang, Molecules, 13, 2229 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
  4. 4.SOA Key Laboratory for Polar SciencePolar Research Institute of ChinaShanghaiP. R. China
  5. 5.Jiangsu Kanion Pharmaceutical Co. LtdLianyungangP. R. China

Personalised recommendations