Chemistry of Natural Compounds

, Volume 54, Issue 3, pp 567–569 | Cite as

Specific Inhibitors of Sporangium Formation of Phytophthora capsici from Kalimeris indica

  • H. Zhang
  • U. Farooq
  • L. H. Cheng
  • Y. Ye
  • Y. C. Wang
  • H. Kawagishi
  • M. Ojika
  • J. H. QiEmail author

Phytophthora, which comprises nearly 80 pathogenic species, has caused devastating plant diseases worldwide and brings about serious economic losses every year [1]. Historically, P. infestans, the most notable species in the Phytophthora family, caused potato late blight and led to the great Irish famine in the mid-1840s [2]. P. ramorum, a new aggressive species, recently caused sudden oak death and infected large areas of forests across the United States and Europe [3]. However, few fungicides are effectively able to control Phytophthora. Thus, the discovery of effective methods to control Phytophthora has economic and social significance.

Sexual reproduction and asexual reproduction are two crucial biological events in the life cycle of Phytophthora. To control the sexual reproduction of Phytophthora, we determined the chemical structures of two signaling molecules, hormones α1 and α2, which stimulate sexual reproduction in heterothallic species [4, 5, 6]. This strategy, which...



This work was financially supported by the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 201303018) and the Natural Science Foundation of China (Grant Nos. 21572204 and 21661140001).


  1. 1.
    H. S. Judelson and F. A. Blanco, Nat. Rev. Microbiol., 3, 47 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    W. E. Fry and S. B. Goodwin, Bioscience, 47, 363 (1997).CrossRefGoogle Scholar
  3. 3.
    C. R. Lane, P. A. Beales, K. J. D. Hughes, R. L. Griffin, D. Munro, C. M. Brasier, and J. F. Webber, Plant Pathol., 52, 414 (2003).CrossRefGoogle Scholar
  4. 4.
    J. H. Qi, T. Asano, M. Jinno, K. Matsui, K. Atsumi, Y. Sakagami, and M. Ojika, Science, 309, 1828 (2005).CrossRefPubMedGoogle Scholar
  5. 5.
    A. Yajima, Y. Qin, X. Zhou, N. Kawanishi, X. Xiao, J. Wang, D. Zhang, Y. Wu, T. Nukada, G. Yabuta, J. H. Qi, T. Asano, and Y. Sakagami, Nat. Chem. Biol., 4, 235 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    M. Ojika, S. D. Molli, H. Kanazawa, A. Yajima, K. Toda, T. Nukada, H. M. Mao, R. Murata, T. Asano, J. H. Qi, and Y. Sakagami, Nat. Chem. Biol., 7, 591 (2011).CrossRefPubMedGoogle Scholar
  7. 7.
    J. T. Han, M. H. Bang, O. K. Chun, D. O. Kim, C. Y. Lee, and N. I. Baek, Arch. Pharm. Res., 27, 390 (2004).CrossRefPubMedGoogle Scholar
  8. 8.
    H. B. Lee, E. K. Kim, S. J. Park, S. G. Bang, T. G. Kim, and D. W. Chung, J. Agric. Food Chem., 58, 4808 (2010).CrossRefPubMedGoogle Scholar
  9. 9.
    I. Atay, H. Kirmizibekmez, A. C. Goren, and E. Yesilada, Turk. J. Chem., 39, 34 (2015).CrossRefGoogle Scholar
  10. 10.
    B. K. Eskalieva, A. Akhmed, G. Sh. Burasheva, Zh. A. Abilov, and V. U. Akhmad, Chem. Nat. Compd., 40, 87 (2004).CrossRefGoogle Scholar
  11. 11.
    F. L. Yan, A. X. Wang, and Z. J. Jia, Pharmazie, 59, 882 (2004).PubMedGoogle Scholar
  12. 12.
    K. Ishiguro, S. Nagata, H. Fukumoto, M. Yamaki, S. Takagi, and K. Isoi, Phytochemistry, 30, 3639 (1991).CrossRefGoogle Scholar
  13. 13.
    C. S. Yoon, D. C. Kim, D. S. Lee, K. S. Kim, W. Ko, J. H. Sohn, J. H. Yim, Y. C. Kim, and H. Oh, Int. Immunopharmacol., 23, 568 (2014).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. Zhang
    • 1
  • U. Farooq
    • 1
  • L. H. Cheng
    • 1
  • Y. Ye
    • 1
  • Y. C. Wang
    • 2
  • H. Kawagishi
    • 3
  • M. Ojika
    • 4
  • J. H. Qi
    • 1
    Email author
  1. 1.College of Pharmaceutical SciencesZhejiang UniversityHangzhouP. R. China
  2. 2.College of Plant ProtectionNanjing Agricultural UniversityNanjingP. R. China
  3. 3.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan
  4. 4.Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations