Advertisement

Chemistry of Natural Compounds

, Volume 52, Issue 6, pp 1118–1120 | Cite as

Chemical Composition and Antimicrobial Activity of the Essential Oil from Comarum salesovianum Leaves and Flowers

  • S. B. Gao
  • Q. Y. Zeng
  • J. Ma
  • J. Wu
  • P. C. Lin
Article
  • 51 Downloads

There are about 10 known species of Comarum L. around the world, which are spread over the northern hemisphere temperate zone, and two of the 10 known species are widespread over China. They are Comarum salesovianum (Stephan) Asch. et Graebn. and C. palustre L. [1]. C. salesovianum is widespread over hills, valleys, and river Banks of 3600–4000 m above sea level of Inner Mongolia, Ningxia, Gansu, Qinghai, Xinjiang, and Tibet. The synonym of it is Comarum salesovii (Stephan ex Willd.) Bunge. It has been found to be poisonous to sheep in Xinjiang [2]. The plant has often been used to treat eye infections in Pakistan and India [3]. Previous studies have reported that the extract from C. salesovianum, obtained using water or alcohol, exhibits antibacterial activity to 15 mm or more diameter in the growth zone of Staphylococcus [4], while studies of the activity of the essential oil of C. salesovianumhave not been found. The goals of this study were to analyze the chemical composition and...

Keywords

Escherichia Coli Antibacterial Activity Staphylococcus Aureus Saccharomyces Cerevisiae Pseudomonas Aeruginosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    The Chinese Academy of Sciences in China Plant Volunteer Editors Committee, Flora of China, Vol. 37 [Z], Science Press, Beijing, 1985, pp. 331–332.Google Scholar
  2. 2.
    The Chinese Academy of Sciences in China Plant Volunteer Editors Committee, Flora of China, Vol. 37 [Z], Science Press, Beijing, 1985, p. 334.Google Scholar
  3. 3.
    B. Khan, A. Abdukadir, R. Qureshi, and G. Mustafa, Pak. J. Bot., 43 (5), 2301 (2011).Google Scholar
  4. 4.
    Y. Nobuo and S. Hiroyuki, JPO, JP 2011001329-A (2011).Google Scholar
  5. 5.
    W. Y. Kang, Z. Q. Ji, and J. M. Wang, Chem. Nat. Compd., 45, 575 (2009).CrossRefGoogle Scholar
  6. 6.
    G. R. Danner, U.S. Patent Appl., 12, 714 (2010).Google Scholar
  7. 7.
    J. F. Wei, H. P. Gu, and W. Y. Kang, Chem. Nat. Compd., 49, 367 (2013).CrossRefGoogle Scholar
  8. 8.
    N. Tabanca, F. Demirci, T. Ozek, G. Tumen, and K. H. C. Baser, Chem. Nat. Compd., 37, 238 (2001).CrossRefGoogle Scholar
  9. 9.
    A. Rahman, S. M. Al-Reza, and S. C. Kang, J. Am. Oil Chem. Soc., 88 (4), 573 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Gourine, M. Yousfi, I. Bombarda, B. Nadjemi, and E. Gaydou, J. Am. Oil Chem. Soc., 87 (2), 157 (2010).CrossRefGoogle Scholar
  11. 11.
    C. I. Tuberoso, A. Barra, A. Angioni, E. Sarritzu, and F. M. Pirisi, J. Agric. Food Chem., 54 (4), 1420 (2006).CrossRefPubMedGoogle Scholar
  12. 12.
    K. H. C. Baser, T. Ozek, H. R. Nuriddinov, and A. B. Demirci, Chem. Nat. Compd., 38, 54 (2002).CrossRefGoogle Scholar
  13. 13.
    R. J. Pawlosky, J. R. Hibbeln, J. A. Novotny, and N. Salem, J. Lipid Res., 42 (8), 1257 (2001).PubMedGoogle Scholar
  14. 14.
    T. Ringbom, U. Huss, A. Stenholm, S. Flock, L. Skattebol, P. Perera, and L. Bohlin, J. Nat. Prod., 64 (6), 745 (2001).CrossRefPubMedGoogle Scholar
  15. 15.
    A. Altintas, M. Kosar, N. Kirimer, K. H. C. Baser, and B. Demirci, Chem. Nat. Compd., 42, 24 (2006).CrossRefGoogle Scholar
  16. 16.
    M. A. Hess, M. J. Haas, T. A. Foglia, and W. N. Marmer, Energy Fuels, 19 (4), 1749 (2005).CrossRefGoogle Scholar
  17. 17.
    I. Zhelev, I. Dimitrova-Dyulgerova, P. Merdzhanov, and A. Stoyanova, J. Essent. Oil Bear. Plants, 17 (2), 196 (2014).CrossRefGoogle Scholar
  18. 18.
    B. Chen, J. Wang, P. Yuan, N. Cao, and W. Kang, Fine Chem., 26 (12), 1188 (2009).Google Scholar
  19. 19.
    A. R. Jassbi, Phytochemistry, 67 (18), 1977 (2006).CrossRefPubMedGoogle Scholar
  20. 20.
    L. H. Li, J. Z. Wu, and L. P. Qin, Chem. Nat. Compd., 44, 797 (2008).CrossRefGoogle Scholar
  21. 21.
    J. Wu, Q. Xiao, J. Xu, M. Y. Li, J. Y. Pan, and M. H. Yang, Nat. Prod. Rep., 25 (5), 955 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    M. Q. Samejo, S. Memon, M. I. Bhanger, and K. M. Khan, Chem. Nat. Compd., 48, 898 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Wu, X. Li, D. Yang, X. Hu, and J. Zhang, Chem. Eng. III, 71 (2013).Google Scholar
  24. 24.
    H. Vahedi, J. Lari, M. Halimi, M. Nasrabadi, and A. Vahedi, J. Essent. Oil Bear. Plants, 15 (6), 895 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Chemistry and Life SciencesQinghai University for NationalitiesXiningChina
  2. 2.Key Laboratory for Tibet Plateau Phytochemistry of Qinghai ProvinceXiningP. R. China
  3. 3.State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou UniversityLanzhouP. R. China

Personalised recommendations