Chemistry of Natural Compounds

, Volume 51, Issue 4, pp 766–768 | Cite as

Bioactive Perylene Derivatives from a Soft Coral-Derived Fungus Alternaria sp. (ZJ-2008017)

  • Cai-Juan Zheng
  • Xiu-Mei Fu
  • Xiu-Li Zhang
  • Wen-Wen Kong
  • Chang-Yun WangEmail author

Marine-derived fungi have proved to be a promising source of structurally novel and biologically active secondary metabolites that have become interesting and significant resources for drug discovery [1, 2]. Perylene derivatives have been isolated from the marine-derived fungi of the genera of Alternaria and Stemphylium [3, 4]. They are of ten were found to have a partially reduced perylene quinone skeleton, and such perylene derivatives sometimes show a variety of phytotoxins and mutagenic activities [4].

As part of our ongoing investigation into new natural products, a series of antibacterial, antifouling, and cytotoxic compounds have been isolated from marine-derived fungi from the South China Sea [5, 6, 7, 8, 9, 10, 11]. Chemically-induced teratogenicity is preventable with proactive reproductive safety evaluations. The developing zebrafish (Daniorerio) is an in vivo developmental model with a number of advantages over in vitrosystems and provides a simple, inexpensive, and rapid...


EtOAc Perylene Zebrafish Embryo Soft Coral EtOAc Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. Ying Xu, Division of Life Science, the Hong Kong University of Science and Technology, China, for antifouling bioassay. We acknowledge funding from the Program of National Natural Science Foundation of China (Nos. 41130858; 40976077), Natural Science Foundation of Shandong Province (ZR2011HM085), and Guangdong Special Financial Fund of Innovative Development of Marine Economic Demonstration Project (GD2012-D01-001).


  1. 1.
    J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munro, and M. R. Prinsep, Nat. Prod. Rep., 30, 237 (2013).PubMedCrossRefGoogle Scholar
  2. 2.
    D. J. Newman and G. M. Cragg, J. Nat. Prod., 75, 311 (2012).PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    J. Kjer, V. Wray, R. Edrada-Ebel, R. Ebel, A. Pretsch, W. H. Lin, and P. Proksch, J. Nat. Prod., 72, 2053 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    S. S. Gao, X. M. Li, and B. G. Wang, Nat. Prod. Comm., 4, 1477 (2009).Google Scholar
  5. 5.
    C. L. Shao, R. F. Xu, M. Y.Wei, Z. G. She, and C. Y. Wang, J. Nat. Prod., 76, 779 (2013).PubMedCrossRefGoogle Scholar
  6. 6.
    C. J. Zheng, C. L. Shao, L. Y. Wu, M. Chen, K. L. Wang, D. L. Zhao, X. P. Sun, G. Y. Chen, and C. Y. Wang, Mar. Drugs, 11, 2054 (2013).PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    C. J. Zheng, C. L. Shao, Z. Y. Guo, J. F. Chen, D. S. Deng, K. L.Yang, Y. Y. Chen, X. M. Fu, Z. G. She, Y. C. Lin, and C. Y. Wang, J. Nat. Prod., 75, 189 (2012).PubMedCrossRefGoogle Scholar
  8. 8.
    X. P. Sun, Y. Xu, F. Cao, R. F. Xu, X. L. Zhang, and C. Y. Wang, Chem. Nat. Compd., 50, 1153 (2014).Google Scholar
  9. 9.
    M. Y. Wei, C. Y. Wang, Q. A. Liu, C. L. Shao, Z. G. She, and Y. C. Lin, Mar. Drugs, 8, 941 (2010).PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    C. L. Shao, C. Y. Wang, M. Y. Wei, Y. C. Gu, Z. G. She, P. Y. Qian, and Y. C. Lin, Bioorg. Med. Chem. Lett., 21, 690 (2011).PubMedCrossRefGoogle Scholar
  11. 11.
    C. L. Shao, H. X. Wu, C. Y. Wang, Q. A. Liu, Y. Xu, M. Y. Wei, P. Y. Qian, Y. C. Gu, C. J. Zheng, Z. G. She, and Y. C. Lin, J. Nat. Prod., 74, 629 (2011).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Parng, W. L. Seng, C. Semino, and P. McGrath, Technol., 1, 41 (2002).Google Scholar
  13. 13.
    K. C. Brannen, J. M. Panzica-Kelly, T. L. Danberry, and K. A. Augustine-Rauch, Birth. Defects Res. B, 89, 66 (2010).CrossRefGoogle Scholar
  14. 14.
    K. Krohn, M. John, H. J. Aust, S. Draeger, and B. Schulz, Nat. Prod. Lett., 14, 31 (1999).CrossRefGoogle Scholar
  15. 15.
    M. E. Stack, E. P. Mazzola, S. W. Page, A. E. Pohland, R. J. Highet, M. S. Tempesta, and D. G. Corley, J. Nat. Prod., 49, 866 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    C. M. Hradil, Y. F. Hallock, J. Clardy, D. S. Kenfield, and G. Strobel, Phytochemistry, 28, 73 (1989).CrossRefGoogle Scholar
  17. 17.
    A. C. Stierle, J. H. Caddlina, and G. A. Strobel, J. Nat. Prod., 52, 42 (1989).CrossRefGoogle Scholar
  18. 18.
    M. E. Stack and M. J. Prival, Appl. Env. Microbiol., 52, 718 (1986).Google Scholar
  19. 19.
    A. Arone and G. Nasini, J. Chem. Soc. Perkin 1, 525 (1986).CrossRefGoogle Scholar
  20. 20.
    T. Harder, V. Thiyagarajan, and P. Y. Qian, Biofouling: J. Bioadhesion Biofilm Res., 17, 257 (2001).CrossRefGoogle Scholar
  21. 21.
    S. H. Qi, S. Zhang, P. Y. Qian, Z. H. Xiao, and M. Y. Li, Tetrahedron, 62, 9123 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Cai-Juan Zheng
    • 1
    • 2
  • Xiu-Mei Fu
    • 1
  • Xiu-Li Zhang
    • 1
  • Wen-Wen Kong
    • 1
  • Chang-Yun Wang
    • 1
    Email author
  1. 1.Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and PharmacyOcean University of ChinaQingdaoP. R. China
  2. 2.Key Laboratory of Tropical Medicinal Plant Chemistry, The Ministry of Education of China, College of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouP. R. China

Personalised recommendations