Chemistry of Natural Compounds

, Volume 48, Issue 3, pp 451–456

Isolation, purification, and characterization of thermophilic laccase from the xerophyte Cereus pterogonus


Three laccase temperature isoforms were isolated and purified to homogeneity from the xerophyte plant species Cereus pterogonus. This catalytically active protein exhibited an apparent molecular mass of 137 kDa, 90 kDa, and 43 kDa. Under reducing conditions the enzyme yielded a subunit molecular mass of 43 kDa alone, suggesting that the enzyme is a multimer of its subunits. The enzyme exhibited an optimum pH of 10 with 2,6-dimethoxyphenol used as a substrate. The 137 and 90 kDa forms yielded optimum activity at 90°C; whereas the 43 kDa molecular form yielded optimum activity at 60°C. The enzyme kinetic constant Km remained closely similar for all three enzyme forms, whereas Vmax varied by 25 % overall. The catalytic activity remained above its t1/2 value in excess of the 30 min denaturation assay period at 60°C and 90°C. These high-temperature isoforms of the plant laccase enzyme with alkaline pH optima can find great industrial use.


2,6-dimethoxyphenol alkaline pH Cereus pterogonus laccase xerophyte 


  1. 1.
    L. Pereira, C. Bastos, T. Tzanov, A. Cavaco-Paulo, and G. M. Guebitz, Environ. Chem. Lett., 3, 66 (2005).CrossRefGoogle Scholar
  2. 2.
    A. Leonowicz, K. Grzywnowicz, and M. Malinowska, Acta Biochim. Pol., 26, 431 (1979).PubMedGoogle Scholar
  3. 3.
    A. Leonowicz, A. Matuszewska, J. Luterek, D. Ziegenhagen, M. Wojtas-Wasilewska, N. S. Cho, M. Hofrichter, and J. Rogalski, Fungal Genet. Biol., 27, 175 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    H. D. VanEtten, R. W. Sandrock, C. C. Wasmann, S. D. Soby, K. McCluskey, and P. Wang, Can. J. Bot., 73, S518 (1995).CrossRefGoogle Scholar
  5. 5.
    D. J. Huber and E. M. O´Donoghue, Plant Physiol., 102, 473 (1993).PubMedGoogle Scholar
  6. 6.
    G. M. B. Soares, M. Costa-Ferreira, and M. T. Pessoa de Amorim, Bioresour. Technol., 79, 171 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Saito, K. Kato, Y. Yokogawa, M. Nishida, and N. Yamashita, J. Biosci. Bioeng., 98, 64 (2004).PubMedGoogle Scholar
  8. 8.
    R. Bourbonnais, M. G. Paice, B. Freiermuth, E. Bodie, and S. Borneman, Appl. Environ. Microbiol., 63, 4627 (1997).PubMedGoogle Scholar
  9. 9.
    M. Balakshin, C. L. Chen, J. S. Gratzl, A. G. Kirkman, and H. Jakob, J. Mol. Catal. B-Enzym., 16, 205 (2001).CrossRefGoogle Scholar
  10. 10.
    T. Kuuva, R. Lantto, T. Reinikainen, J. Buchert, and K. Autio, Food Hydrocolloid, 17, 679 (2003).CrossRefGoogle Scholar
  11. 11.
    S. Timur, N. Pazarloglu, R. Pilloton, and A. Telefoncu, Sensor Actuat. B-Chem., 97, 132 (2004).CrossRefGoogle Scholar
  12. 12.
    E. Dube, F. Shareck, Y. Hurtubise, M. Beauregard, and C. Daneault, J. Ind. Microbiol. Biotechnol., 35, 1123 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    W. T. Sulistyaningdyah, J. Ogawa, H. Tanaka, C. Maeda, and S. Shimizu, FEMS Microbiol. Lett., 230, 209 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Skalova, J. Dohnalek, L. H. Ostergaard, P. R. Ostergaard, P. Kolenko, J. Duskova, A. Stepankova, and J. Hasek, J. Mol. Biol., 385, 1165 (2009).PubMedCrossRefGoogle Scholar
  15. 15.
    G. N. Kumar and K. Srikumar, Biomed. Chromatogr., 25, 707 (2011).PubMedCrossRefGoogle Scholar
  16. 16.
    U. K. Laemmli, Nature, 227, 680 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Palmieri, P. Giardina, C. Bianco, A. Scaloni, A. Capasso, and G. Sannia, J. Biol. Chem., 272, 31301 (1997).PubMedCrossRefGoogle Scholar
  18. 18.
    M. M. Bradford, Anal. Biochem., 72, 248 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations