Chemistry of Natural Compounds

, Volume 48, Issue 3, pp 385–391 | Cite as

Synthesis of aurones based on usninic acid

  • O. A. Luzina
  • D. N. Sokolov
  • A. V. Shernyukov
  • N. F. Salakhutdinov
Article

(+)-Usninic acid was brominated at the acetyl group located on the aromatic ring. Aurones were synthesized based on the intramolecular cyclization of monobrominated (+)-usninic acid.

Keywords

(+)-usninic acid bromination aurones 

References

  1. 1.
    K. Ingolfsdottir, Phytochemistry, 61, 729 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    J. M. Nichols, L. M. Bishop, R. G. Bergman, and J. A. Ellman, J. Am. Chem. Soc., 132(36), 12554 (2010).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Heng, K. R. Gryncel, and E. R. Kantrowitz, Bioorg. Med. Chem., 17(11), 3916 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Sarkunam and M. Nallu, J. Heterocycl. Chem., 42(1), 5 (2005).CrossRefGoogle Scholar
  5. 5.
    C. R. Ogle and L. Main, J. Chem. Res. (S), 472 (2001).Google Scholar
  6. 6.
    O. Keyser, A. F. Kiderlen, U. Folkers, and H. Kolodziej, Planta Med., 65(4), 316 (1999).CrossRefGoogle Scholar
  7. 7.
    N. Hadj-esfandiari, L. Navidpour, H. Shadnia, M. Amini, N. Samadi, M. Faramarzi, and A. Shafiee, Bioorg. Med. Chem. Lett., 17(22), 6354 (2007).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Moritomo, H. Fukumoto, T. Nozoe, A. Hagiwara, and K. Komai, J. Agric. Food Chem., 55(3), 700 (2007).CrossRefGoogle Scholar
  9. 9.
    A. Detsi, M. Majdalani, C. A. Kontogiorgis, D. Hadjipavlou-Litina, and P. Kefalas, Bioorg. Med. Chem., 17(23), 8073 (2009).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Okombi, D. Rival, S. Bonnet, A. Mariotte, and E. Perrier, J. Med. Chem., 49, 329 (2006).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Sheng, Y. Xu, C. Hu, J. Zhang, X. Lin, J. Li, B. Yang, Q. He, and Y. Hu, Eur. J. Med. Chem., 44(1), 7 (2009).PubMedCrossRefGoogle Scholar
  12. 12.
    H. M. Sim, C. Y. Lee, P. L. R. Ee, and M. L. Go, Eur. J. Pharm. Sci., 35, 293 (2008).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Venkateswarlu, G. K. Panchagnula, M. B. Guraiah, and G. V. Subbaraju, Tetrahedron, 62, 9855 (2006).CrossRefGoogle Scholar
  14. 14.
    G. Imre, I. Jakli, A. Kalaszi, and O. Farkas, Advanced Automatic Generation of 3D Molecular Structures, in: 1st European Chemistry Congress, Budapest, Hungary, August 27–31, 2006.Google Scholar
  15. 15.
    G. B. Rocha, R. O. Freire, A. M. Simas, and J. J. P. Stewart, J. Comput. Chem., 27, 1101 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    MOPAC2009, J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://OpenMOPAC.net (2008).
  17. 17.
    N. M. O’Boyle, T. Vandermeersch, C. J. Flynn, A. R. Maguire, and G. R. Hutchinson, J. Cheminf., 3, 8 (2011).CrossRefGoogle Scholar
  18. 18.
    J. P. Perdew, K. Burke, and M. Ernzehof, Phys. Rev. Lett., 77, 3865 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    D. N. Laikov, Chem. Phys. Lett., 416, 116 (2005).CrossRefGoogle Scholar
  20. 20.
    D. N. Laikov, Chem. Phys. Lett., 281, 151 (1997); D. N. Laikov and Yu. A. Ustynyuk, Izv. Akad. Nauk, Ser. Khim., 804 (2005).Google Scholar
  21. 21.
    N. F. Salakhutdinov, M. P. Polovinka, and M. Yu. Panchenko, RF Pat. No. 2,317,076 C1; Byull. Izobret., No. 5 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • O. A. Luzina
    • 1
  • D. N. Sokolov
    • 1
  • A. V. Shernyukov
    • 1
  • N. F. Salakhutdinov
    • 1
  1. 1.N. N. Vorozhtsov Novosibirsk Institute of Organic ChemistryNovosibirskRussia

Personalised recommendations