Chemistry of Natural Compounds

, Volume 41, Issue 5, pp 487–490 | Cite as

Fatty Acids, Phospholipids, and the Betaine Lipid DGTS from the Aquatic Fern Salvinia natans

  • O. A Rozentsvet
  • T. Rezanka
  • E. S. Bosenko
  • E. A. Uzhametskaya
  • V. M. Dembitskii
Article

Abstract

Fatty acids, total lipids, phospholipids, and the betaine lipid DGTS in aerial and underwater leaves and sori of the aquatic fern Salvinia natans were investigated. Lipid compositions from various parts (organs) of the fern were different. The distributions of polar lipids and fatty acids in various organs were discussed. Special attention was paid to the DGTS-forming capability of this fern.

Key words

Salvinia natans betaine lipid DGTS fatty acids phospholipids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. A. Thomas and P. M. Room, Nature, 320, 581 (1986).Google Scholar
  2. 2.
    M. D. Makhlin and T. D. Surova, in: Life of Plants [in Russian], Vol. 4, I. V. Grushvitskii and S. G. Zhilin, eds., Prosveshchenie, Moscow (1978).Google Scholar
  3. 3.
    K. J. Zandstra, Acta Bot. Neerl., 15, 389 (1966).Google Scholar
  4. 4.
    R. Tropepi and C. Ribecai, Review of Paleobotany and Palynology, 111, 103 (2000).Google Scholar
  5. 5.
    P. Lahdesmaki, Physiol. Plantarum, 21, 1097 (1968).Google Scholar
  6. 6.
    O. A. Rozentsvet, V. G. Kozlov, and L. V. Spirikhin, Khim. Prir. Soedin., 251 (2002).Google Scholar
  7. 7.
    O. A. Rozentsvet and E. N. Bosenko, Khim. Prir. Soedin., 413 (2002).Google Scholar
  8. 8.
    J. L. Harwood, in: The Lipid Handbook, F. D. Gunstone, J. L. Harwood, and F. B. Padley, eds., Chapman and Hall, London, Glasgow, Weinheim, and New York (1994), p. 200.Google Scholar
  9. 9.
    N. Sato, Bot. Mag. Tokyo, 105, 185 (1982).Google Scholar
  10. 10.
    W. Eichenberger, Plant Physiol. Biochem., 31, 213 (1993).Google Scholar
  11. 11.
    V. M. Dembitsky, Prog. Lipid Res., 35, 1 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    S. V. Khotimchenko, N. G. Klochkova, and V. E. Vaskovsky, Biochem. Syst. Ecol., 18, 93 (1990).CrossRefGoogle Scholar
  13. 13.
    C. Benning, Z. Huang, and D. Gage, Arch. Biochem. Biophys., 317, 103 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Kunzler and W. Eichenberger, Phytochemistry, 46, 383 (1997).Google Scholar
  15. 15.
    N. Sato and M. Furuya, Phytochemistry, 23, 1625 (1984).Google Scholar
  16. 16.
    E. G. Bligh and W. J. Dyer, Can. J. Biochem. Physiol., 37, 911 (1959).PubMedGoogle Scholar
  17. 17.
    M. Kates, Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Elsevier, New York (1973).Google Scholar
  18. 18.
    V. E. Vaskovsky and L. A. Latyshev, J. Chromatogr., 115, 246 (1975).PubMedGoogle Scholar
  19. 19.
    V. E. Vaskovsky, I. M. Vasendin, and E. Y. Kostetsky, J. Chromatogr., 14, 129 (1975).Google Scholar
  20. 20.
    V. M. Dembitsky and O. A. Rozentsvet, Phytochemistry, 28, 3341 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • O. A Rozentsvet
    • 1
  • T. Rezanka
    • 2
  • E. S. Bosenko
    • 1
  • E. A. Uzhametskaya
    • 1
  • V. M. Dembitskii
    • 3
  1. 1.Institute of Volga Basin EcologyRussian Academy of SciencesTol'yattiRussia
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.Natural Lipid Group, Environmental Research DivisionHebrew UniversityJerusalemIsrael

Personalised recommendations