Computational Mathematics and Modeling

, Volume 30, Issue 4, pp 378–382 | Cite as

The Effect of a Monomer Source on the Oscillation Period in an Irreversible Coagulation Model

  • S. A. MatveevEmail author
  • A. P. Smirnov
  • E. E. Tyrtyshnikov

The article examines the kinetic equations of irreversible coagulation with a source of monomers and a sink of particles that exceed the maximum allowed size. Time-periodic solutions are known for the class of Brownian kernels. In this study, we analyze the effect of the monomer source intensity on the period and the amplitude of the particle concentration oscillations over time. The numerical results suggest that as the source intensity is increased, the oscillation amplitude increases while the oscillation period decreases, so that no qualitative changes are observed in the solution structure. A change in source intensity does not produce scaling of the model time and model concentrations of the particles per unit volume of the medium.


aggregation kinetics oscillation processes low-rank approximations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Galkin, Smoluchoski Equation [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  2. 2.
    H. Hayakawa, “Irreversible kinetic coagulations in the presence of a source,” J. of Physics A,20, No. 12, L801 (1987).CrossRefGoogle Scholar
  3. 3.
    P. P. Jones, R. Rajesh, O. Zaboronski, R. C. Ball, and C. Connaughton, “Collective oscillations in irreversible coagulation driven by monomer inputs and large-cluster outputs,” Physical Review Letters,109, No. 16, 168304 (2011).Google Scholar
  4. 4.
    S. A. Matveev, E. E. Tyrtyshnikov, A. P. Smornog, and E. V. Brilliantov, “A fast solution method for the equation of Smoluchowski-type aggregation-shattering kinetic equations,” Vychisl. Metody i Programm.,15, No. 1, 1–8 (2014).Google Scholar
  5. 5.
    S. A. Matveev, “Parallel implementation of a fast method for the solution of Smoluchowski-type aggregation-shattering kinetic equations,” Vychisl. Metody i Programm.,16, No. 3, 360–368 (2015).Google Scholar
  6. 6.
    S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, “A fast numerical method for the Cauchy problem for the Smoluchowski equation,” J. Comput. Physics,282, 23–32 (2015).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. A. Matveev, P. L. Krapivsky, A. P. Smirnov, E. E. Tyrtyshnikov, and N. V. Brilliantov, “Oscillations in aggregation-shattering processes,” Physical Review Letters,119, No. 26, 260601 (2017).MathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Connaughton, A. Dutta, R. Rajesh, N. Siddharth, and O. Zaboronski, “Stationary mass distribution and nonlocality in models of coalescence and shattering,” Physical Review E,97, No. 2, 022137 (2018).CrossRefGoogle Scholar
  9. 9.
    I. V. Timokhin, S. A. Matveev, N. Siddharth, E. E. Tyrtyshnikov, A. P. Smirnov, and N. V. Brilliantov, “Newton method for stationary and quasi-stationary problems for Smoluchowski-type equations,” J. Comput. Physics,382, 124–137 (2019).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Matveev
    • 1
    • 2
    Email author
  • A. P. Smirnov
    • 3
  • E. E. Tyrtyshnikov
    • 2
  1. 1.Skolkovo Institute of Science and TechnologyMoscowRussia
  2. 2.Marchuk Institute of Numerical Mathematics, Russian Academy of SciencesMoscowRussia
  3. 3.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations