Computational Mathematics and Modeling

, Volume 30, Issue 4, pp 364–377 | Cite as

Mathematical Modeling of the Blood Flow in Hepatic Vessels

  • T. R. ZhaleevEmail author
  • V. A. Kubyshkin
  • S. I. Mukhin
  • A. F. Rubina
  • A. B. Khrulenko

A mathematical model is developed for the blood flow in the vessels connected with the hepatic portal vein. A satisfactory anatomical model of the venous vessels of unpaired organs in the abdominal cavity and in the portal vein basin is constructed and integrated into the general systemic circulation model. Computer experiments are carried out modeling redistribution of venous and arterial blood flows in the presence of portal hypertension in liver fibrosis. The hydrodynamic properties of the blood flow are investigated allowing for anatomical and artificial shuts and their effect on pressure reduction in the portal vein. The calculation results are consistent with clinical data.


mathematical modeling hemodynamics portal hypertension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, and others, “Mathematical model of the hemodynamics of the cardiovascular system,” Diff. Uravn.,33, No. 7, 892–898 (1997).Google Scholar
  2. 2.
    A. Y. Bunicheva, S. I. Mukhin, N. V. Sosnin and others, “Mathematical modeling of some applied problems in haemodynamics,” Comput. Math. and Model.,13, No. 4, 382–412 (2002).Google Scholar
  3. 3.
    R. D. Sinel’nikov, Atlas of Human Anatomy [in Russian], 4 Vol., Meditsina, Moscow (1996).Google Scholar
  4. 4.
    V. A. Vishnevskii, V. A. Kubyshkin, and A. V. Chzhao, Liver Surgery: A Manual for Surgeons [in Russian], Miklosh, Moscow (2003), pp. 114-128.Google Scholar
  5. 5.
    A. A. Karman and V. L. Kazushchik, Portal Hypertension: A Textbook [in Rusian], BGMU, Minsk (2014), pp. 32-33.Google Scholar
  6. 6.
    M. A. Abakumov, I. V. Ashmetkov, N. B. Esikov, and others, “A procedure for mathematical modeling of the cardiovascular system,” Mat. Modelirovanie,12, No. 2, 106–117 (2000).Google Scholar
  7. 7.
    V. B. Koshelev, S. I. Mukhin, T. V. Sokolova, and A. P. Favorskii, “Mathematical modeling of the hemodynamics of the cardiovascular system allowing for the effect of neuroregulation,” Matem. Modelirovanie,19, No. 3, 15–29 (2007).Google Scholar
  8. 8.
    A. Ya. Bunicheva, S. I. Mukhin, N. V. Sosnin, and A. B. Khrulenko, “Mathematical modeling of quasi-one-dimensional hemodynamics,” Zh. Vychisl. Matem. i Mat. Fiz.,55, No. 8, 1417–1428 (2015).MathSciNetzbMATHGoogle Scholar
  9. 9.
    C. G. Caro, T. J. Pedley, R. Schroter, et al., The Mechanics of the Circulation, Oxford University Press, New York (1978).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. R. Zhaleev
    • 1
    Email author
  • V. A. Kubyshkin
    • 2
  • S. I. Mukhin
    • 1
  • A. F. Rubina
    • 1
  • A. B. Khrulenko
    • 1
  1. 1.Faculty of Computational Mathematics and CyberneticsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Surgery, Faculty of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations