Computational Mathematics and Modeling

, Volume 30, Issue 4, pp 340–351 | Cite as

Stabilized Solution for a Time-Fractional Inverse Problem with an Unknown Nonlinear Condition

  • A. BabaeiEmail author
  • S. Banihashemi

In this paper, we consider a time-fractional inverse problem in which the nonlinear boundary conditions contain an unknown function. A finite difference scheme will be proposed to solve numerically the inverse problem. This inverse problem is generally ill-posed. For this reason, we will employ the mollification regularization method with the generalized cross-validation criterion to find a stable solution. The stability and convergence of numerical solutions are investigated. Finally, some numerical examples are presented to illustrate the validity and effectiveness of the proposed method.


Time fractional inverse problem Caputo fractional derivative Mollification Finite difference scheme Convergence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. V. Beck, B. Blackwell, and C. R. Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley, New York (1985).zbMATHGoogle Scholar
  2. 2.
    V. Penenko, A. Baklanov, E. Tsvetova, and A. Mahura, “Direct and inverse problems in a variational concept of environmental modeling,” Pure. Appl. Geophys.,169, 447–465 (2012).CrossRefGoogle Scholar
  3. 3.
    D. A. Murio, Mollification and space marching, in: K. Woodbury (editor), Inverse Engineering Handbook, CRC Press, Boca Raton FL (2002).Google Scholar
  4. 4.
    A. Shidfar, J. Damirchi, and P. Reihani, “An stable numerical algorithm for identifying the solution of an inverse problem,” Appl. Math. Comput.,190, 231–236 (2007).MathSciNetzbMATHGoogle Scholar
  5. 5.
    I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).zbMATHGoogle Scholar
  6. 6.
    R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep.,339, 1–77 (2000).MathSciNetCrossRefGoogle Scholar
  7. 7.
    E. Scalas, R. Gorenflo, and F. Mainardi, “Fractional calculus and continuous-time finance,” Phys. A.,284, 376–384 (2000).MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. A. Murio, “Time fractional IHCP with Caputo fractional derivatives,” Comput. Math. Appl.,56, 2371–2381 (2008).MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. H. Zheng and T. Wei, “Spectral regularization method for the time fractional inverse advection–dispersion equation,” J. Comput. Appl. Math.,233, 2631–2640 (2010).MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. Rundell, X. Xu, and L. Zuo, “The determination of an unknown boundary condition in a fractional diffusion equation,” Appl. Anal., 92, 1511–1526 (2013).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Aldoghaither, D. Y. Liu, and T. M. Laleg-Kirati, “Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation,” SIAM J. Sci. Comput.,37, 2813–2839 (2015).MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. F. Dou and Y. C. Hon, “Numerical computation for backward time-fractional diffusion equation,” Eng. Anal. Bound. Elem.,40, 138–146 (2014).MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Taghavi, A. Babaei and A. Mohammadpour, “A stable numerical scheme for a time fractional inverse parabolic equation,” Inverse Probl. Sci. Eng.,25, 1474–1491 (2017) .MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Babaei, S. Banihashemi, “Reconstructing unknown nonlinear boundary conditions in a time-fractional inverse reaction-diffusionconvection problem,” Numer. Meth. Part. D. E., 25, 976–992 (2019).CrossRefGoogle Scholar
  15. 15.
    M. Garshasbi and H. Dastour, “Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme,” Numer. Algorithms, 68, 769–790 (2015).MathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Tveito and R. Winther, Introduction to Partial Differential Equations, Springer-Verlag, New York (1998).zbMATHGoogle Scholar
  17. 17.
    G. Evans, J. Blackledge, and P. Yardley, Numerical Methods for Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, New York (2000).CrossRefGoogle Scholar
  18. 18.
    S. B. Yuste and J. Quintana-Murillo, “A finite difference method with non-uniform time steps for fractional diffusion equations,” Comput. Phys. Commun.183, 2594–2600 (2012).MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. A. Murio, “Stable numerical solution of a fractional-diffusion inverse heat conduction problem,” Comput. Math. Appl., 53, 1492–1501 (2007).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MazandaranBabolsarIran

Personalised recommendations