Advertisement

Computational Mathematics and Modeling

, Volume 29, Issue 2, pp 244–251 | Cite as

Applied Quantum Physics for Novel Quantum Computation Approaches: an Update

  • S. Manzetti
Article
  • 35 Downloads

Quantum information processing is a critical part of the development of future computers, quantum computers, and quantum algorithms, where elementary particles such as photons and electrons can be applied in optomagnetic or optoelectronic devices. The computational physics behind these emerging approaches is also experiencing dramatic developments. In this paper I report on the most recent mathematical basics for quantum algorithms and quantum computing approaches. Some of these described approaches show intriguing methods for determining the states and wavefunction properties for anyons, bosons, and fermions in quantum wells that have been developed in the last years. The study also shows approaches based on N-quantum states and the reduced 1- and 2-fermion picture, which can be used for developing models for anyons and multi-fermionic states in quantum algorithms. Also, antisymmetry and generalized Pauli constraints have been given particular emphasis and include establishing a basis for pinning and quasipinning for exploring the symmetric states of many-fermionic subsets, as a foundation for quantum information processing, and are here briefly revisited. This study summarizes the developments in recent years of an advanced and important field for future computational techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Klyachko, “The Pauli exclusion principle and beyond,” ArXiv Prepr., arXiv: 0904.2009, 1–5 (2009).Google Scholar
  2. 2.
    C. Schilling, D. Gross, and M. Christandl, “Pinning of Fermionic Occupation Numbers,” Phys. Rev. Lett., 110, 040404 (2013).CrossRefGoogle Scholar
  3. 3.
    I. Bengtsson, “MUBs, polytopes, and finite geometries,” ArXiv Prepr., arXiv: quant-ph/0406174, 1–15 (2004).Google Scholar
  4. 4.
    R. Chakraborty and D. A. Mazziotti, “Generalized Pauli conditions on the spectra of one-electron reduced density matrices of atoms and molecules,” Phys. Rev. A., 89(4), DOI: 10.1103/PhysRevA.89.042505 (2014).Google Scholar
  5. 5.
    P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi, and M. Weiner, “A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6,” J. Phys. A: Math. Theor., 42, No. 24, 245305 (2009).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    C. Schilling, “The quantum marginal problem,” in: Math. Results Quantum Mech., Eds. P. Exner, W. König, and H. Neidhardt, World Scientific, Singapore, pp. 165–176 (2013).Google Scholar
  7. 7.
    A. A. Klyachko, “Quantum marginal problem and N-representability,” in: IOP Publishing, p. 72 (2006).Google Scholar
  8. 8.
    F. Tennie, V. Vedral, and C. Schilling, “Influence of the fermionic exchange symmetry beyond Pauli’s exclusion principle,” Phys. Rev. A, 95, 022336 (2017).CrossRefGoogle Scholar
  9. 9.
    C. Schilling, “Quasipinning and its relevance for N-fermion quantum states,” Phys. Rev. A., 91, 022105 (2015).CrossRefGoogle Scholar
  10. 10.
    C. Schilling, “Hubbard model: Pinning of occupation numbers and role of symmetries,” Phys. Rev. B., 92, 155149 (2015).CrossRefGoogle Scholar
  11. 11.
    F. Tennie, V. Vedral, and C. Schilling, “Generalized Pauli constraints: Hierarchy of pinning and quasipinning-measure,” ArXiv Prepr., ArXiv: 1509.00358 (2015).Google Scholar
  12. 12.
    F. Tennie, D. Ebler, V. Vedral, and C. Schilling, “Pinning of Fermionic Occupation Numbers: General Concepts and One Dimension,” ArXiv Prepr., arXiv: 1602.05198 (2015).Google Scholar
  13. 13.
    J. M. Leinaas, “Exchange statistics — Basic Concepts,” in: Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry, Oxford Martin School, Oxford University, Martin Wood Lecture Theatre (2016).Google Scholar
  14. 14.
    J. Fröhlich and P. Marchetti, “Quantum field theories of vortices and anyons,” Comm. Math. Phys., 121, 177–223 (1989).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    R. Jackiw and V. P. Nair, “Relativistic wave equation for anyons,” Phys. Rev. D, 43, 1933 (1991).MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. B. Laughlin, “Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., 50, 1395 (1983).CrossRefGoogle Scholar
  17. 17.
    R. B. Laughlin, H. L. Störmer, and D. C. Tsui, “Additional background material on the Nobel Prize in Physics 1998,” Joy Search Knowl. Tribute Prof. Dan Tsui., 9 (1999).Google Scholar
  18. 18.
    F. Lalonde and D. McDuff, “Symplectic structures on fiber bundles,” Topology, 42, 309–347 (2003).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    C. Itzykson and J.-B. Zuber, “Quantum field theory”, Courier Corporation (2006).Google Scholar
  20. 20.
    S. M. Girvin, “The quantum Hall effect: novel excitations and broken symmetries,” in: Topological Aspects of Low Dimensional Systems, Springer-Verlag, Berlin 69 (2000), pp. 53–175.Google Scholar
  21. 21.
    X.-G. Wen, “Topological orders in rigid states,” Internat. J. Modern Phys. B, 4, 239–271 (1990).MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Moore and N. Read, “Nonabelions in the fractional quantum Hall effect,” Nuclear Phys. B, 360, 362–396 (1991).MathSciNetCrossRefGoogle Scholar
  23. 23.
    X.-G. Wen, “Mean-field theory of spin-liquid states with finite energy gap and topological orders,” Phys. Rev. B, 44, 2664 (1991).CrossRefGoogle Scholar
  24. 24.
    F. Girelli and E. R. Livine, “Reconstructing quantum geometry from quantum information: spin networks as harmonic oscillators,” Classical Quantum Gravity, 22, 3295 (2005).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    D. Haldane, “Quantum Geometry,” in: Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry, Oxford Martin School, Oxford University, Martin Wood Lecture Theatre (2016).Google Scholar
  26. 26.
    W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Z. für Phys., 43, 172–198 (1927).CrossRefMATHGoogle Scholar
  27. 27.
    W. Heisenberg, “Zur theorie des ferromagnetismus,” Z. für Phys., 49, 619–636 (1928).CrossRefMATHGoogle Scholar
  28. 28.
    E. Abrahams and T. Tsuneto, “Time variation of the Ginzburg-Landau order parameter,” Phys. Rev., 152, 416 (1966).CrossRefGoogle Scholar
  29. 29.
    S. M.-N. Ru, “Sergei Viktorovich Iordanskii,” Tr. Mat. Inst. Steklova, 60, 181–194 (1961).Google Scholar
  30. 30.
    F. Magniez, M. Santha, and M. Szegedy, “Quantum algorithms for the triangle problem,” SIAM J. Comput., 37, 413–424 (2007).MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    J. Pachos, “Computing with anyons?”, in: Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry, Oxford Martin School, Oxford University, Martin Wood Lecture Theatre (2016).Google Scholar
  32. 32.
    M. Peshkin and A. Tonomura, “The Aharonov–Bohm Effect, in: Lect. Notes Phys., 340 (1989).Google Scholar
  33. 33.
    B. Trace, “On the Reidemeister moves of a classical knot,” Proc. Amer. Math. Soc., 89, 722–724 (1983).MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    B. Schein, “Events and the semantic content of thematic relations,” in: Logical Form and Language, pp. 263–344 (2002).Google Scholar
  35. 35.
    X. ’an Jin and F. Zhang, “The Kauffman brackets for equivalence classes of links,” Adv. Appl. Math., 34, 47–64 (2005).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    L. H. Kauffman, “State models and the Jones polynomial,” Topology, 26, 395–407 (1987).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    D. Gross, “Quantum Marginal Problems”, in: Reduced Density Matrices in Quantum Physics and Role of Fermionic Exchange Symmetry, Oxford Martin School, Oxford University, Martin Wood Lecture Theatre (2016).Google Scholar
  38. 38.
    J. Bell, Physics, Long Island City, NY. 1, 1 (1964).Google Scholar
  39. 39.
    V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design problems,” SIAM J. Control Optim., 35, 2118–2127 (1997).MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    J. Denardin, A. Pakhomov, M. Knobel, H. Liu, and X. Zhang, “Giant Hall effect in Co-SiO2 nanocomposites,” J. Phys. Condens. Matter, 12, 3397 (2000).CrossRefGoogle Scholar
  41. 41.
    L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. Gou, and S. J. Ippolito, “Graphene/polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C, 114, 16168–16173 (2010).CrossRefGoogle Scholar
  42. 42.
    Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, 438, 201–204 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Manzetti
    • 1
  1. 1.Department of Cell and Molecular Biology, BMCUppsala UniversityUppsalaSweden

Personalised recommendations