Computational Mathematics and Modeling

, Volume 24, Issue 3, pp 378–403 | Cite as

A Simplified Model of Tax Collection from Enterprises in the Presence of Legal and Shadow Capital

  • A. V. Kryazhimskii
  • S. P. Konovalov
  • M. S. Nikol’skii

In this article we develop and analyze a simplified mathematical model of financial interaction between the state and the enterprise on tax issues. In the first part, we apply heuristic considerations to construct a simplified model that describes the dynamics of tax collection from an enterprise whose capital consists of both legal and shadow components. In the secont part we investigate this model in a game-theoretical framework.


Optimal Length Shadow Zone Stackelberg Equilibrium Legal Capital Enterprise Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Ashmanov, Introduction to Mathematical Economics [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    H. Moulin, Game Theory with Applications from Mathematical Economics [Russian translation], Mir, Moscow (1985).Google Scholar
  3. 3.
    Yu. B. Germeier, Non-Antagonistic Games [in Russian], Nauka, Moscow (1976).Google Scholar
  4. 4.
    H. Von Stackelberg, The Theory of Market Economy, Oxford University Press (1952).Google Scholar
  5. 5.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], GIFML, Moscow (1961).Google Scholar
  6. 6.
    E. B. Lee and L. Markus, Foundations of Optimal Control Theory [Russian translation], Nauka, Moscow (1972).Google Scholar
  7. 7.
    Ph. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).Google Scholar
  8. 8.
    V. M. Matrosov, L. Yu. Anapol’skii, and S. N. Vasil’ev, Comparison Methods in Mathematical System Theory [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  9. 9.
    T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, Academic Press, London-NewYork (1982).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. V. Kryazhimskii
    • 1
  • S. P. Konovalov
    • 1
  • M. S. Nikol’skii
    • 1
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations