Upscaling of the single-phase flow and heat transport in fractured geothermal reservoirs using nonlocal multicontinuum method

  • Maria Vasilyeva
  • Masoud BabaeiEmail author
  • Eric T. Chung
  • Valentin Alekseev
Open Access
Original Paper


In this work, we consider a single-phase flow and heat transfer problem in fractured geothermal reservoirs. Mixed dimensional problems are considered, where the temperature and pressure equations are solved for porous matrix and fracture networks with transfer term between them. For the fine-grid approximation, a finite volume method with embedded fracture model is employed. To reduce size of the fine-grid system, an upscaled coarse-grid model is constructed using the nonlocal multicontinuum (NLMC) method. We present numerical results for two-dimensional problems with complex fracture distributions and investigate an accuracy of the proposed method. The simulations using upscaled model provide very accurate solutions with significant reduction in the dimension of problem.


Geothermal heat recovery Multiscale modeling Fractured media Nonlocal multicontinuum method 



The authors thank the anonymous reviewers for their constructive comments.


MV and VA’s works are supported by the grant of Russian Scientific Fund N17-71-20055 and the mega-grant of Russian Federation Government (N 14.Y26.31.0013). MB’s contribution was made through CUHK-UoM Research Fund. EC and MB’s work are also partially supported by Hong Kong RGC General Research Fund (Project 14304217), CUHK Direct Grant for Research 2017-18, and CUHK-UoM Research Fund.


  1. 1.
    Akkutlu, I.Y., Efendiev, Y., Vasilyeva, M.: Multiscale model reduction for shale gas transport in fractured media. Comput. Geosci., 1–21 (2015)Google Scholar
  2. 2.
    Akkutlu, I.Y., Efendiev, Y., Vasilyeva, M., Wang, Y.: Multiscale model reduction for shale gas transport in poroelastic fractured media. J. Comput. Phys. 353, 356–376 (2018)CrossRefGoogle Scholar
  3. 3.
    Arbogast, T., Douglas, JrJ, Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)CrossRefGoogle Scholar
  4. 4.
    Babaei, M.: Integrated carbon sequestration–geothermal heat recovery: performance comparison between open and close systems. Transp. Porous Media, 1–25 (2018)Google Scholar
  5. 5.
    Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)CrossRefGoogle Scholar
  6. 6.
    Bisdom, K., Bertotti, G., Nick, H.M.: A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks. AAPG Bull. 100(7), 1075–1097 (2016)CrossRefGoogle Scholar
  7. 7.
    Bisdom, K., Nick, H.M., Bertotti, G.: An integrated workflow for stress and flow modelling using outcrop-derived discrete fracture networks. Comput. Geosci. 103, 21–35 (2017)CrossRefGoogle Scholar
  8. 8.
    Bosma, S., Hajibeygi, H., Tene, M, Tchelepi, H.A.: Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM). J. Comput. Phys. (2017)Google Scholar
  9. 9.
    Chung, E.T., Efendiev, Y., Li, G., Vasilyeva, M.: Generalized multiscale finite element method for problems in perforated heterogeneous domains. Appl. Anal. 255, 1–15 (2015)Google Scholar
  10. 10.
    Chung, E.T., Efendiev, Y., Hou, T.Y.: Adaptive multiscale model reduction with generalized multiscale finite element methods. J. Comput. Phys. 320, 69–95 (2016)CrossRefGoogle Scholar
  11. 11.
    Chung, E.T., Efendiev, Y., Leung, T., Vasilyeva, M.: Coupling of multiscale and multi-continuum approaches. GEM-Int. J. Geomath. 8(1), 9–41 (2017)CrossRefGoogle Scholar
  12. 12.
    Chung, E.T., Efendiev, Y., Leung, W.T.: Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 339, 298–319 (2018)CrossRefGoogle Scholar
  13. 13.
    Chung, E.T., Efendiev, Y., Leung, W.T., Vasilyeva, M., Wang, Y.: Non-local multi-continua upscaling for flows in heterogeneous fractured media. J. Comput. Phys. 372, 22–34 (2018)CrossRefGoogle Scholar
  14. 14.
    Crooijmans, R.A., Willems, C.J.L., Nick, H.M., Bruhn, D.F.: The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs. Geothermics 64, 209–219 (2016)CrossRefGoogle Scholar
  15. 15.
    D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: Math. Modell. Numer. Anal. 46(2), 465–489 (2012)CrossRefGoogle Scholar
  16. 16.
    Efendiev, Y., Hou, T.: Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, New York (2009)Google Scholar
  17. 17.
    Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)CrossRefGoogle Scholar
  18. 18.
    Efendiev, Y., Lee, S., Li, G., Yao, J., Zhang, N.: Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method. arXiv:150203828 (2015)
  19. 19.
    Fairley, J., Ingebritsen, S., Podgorney, R.: Challenges for numerical modeling of enhanced geothermal systems. Groundwater 48(4), 482 (2010)CrossRefGoogle Scholar
  20. 20.
    Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM: Math. Modell. Numer. Anal. 48(4), 1089–1116 (2014)CrossRefGoogle Scholar
  21. 21.
    Fumagalli, A., Pasquale, L., Zonca, S., Micheletti, S.: An upscaling procedure for fractured reservoirs with embedded grids. Water Resour. Res. 52(8), 6506–6525 (2016)CrossRefGoogle Scholar
  22. 22.
    Gallup, D.L.: Production engineering in geothermal technology: a review. Geothermics 38(3), 326–334 (2009)CrossRefGoogle Scholar
  23. 23.
    Ginting, V., Pereira, F., Presho, M., Wo, S.: Application of the two-stage Markov Chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 15(4), 691 (2011)CrossRefGoogle Scholar
  24. 24.
    Hajibeygi, H., Kavounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(24), 8729–8743 (2011). CrossRefGoogle Scholar
  25. 25.
    Hao, Y., Fu, P., Johnson, S.M., Carrigan, C.R.: Numerical studies of coupled flow and heat transfer processes in hydraulically fractured geothermal reservoirs. In: Proceedings of the 36th Annual Meeting of Geothermal Resources Council Reno NV (2012)Google Scholar
  26. 26.
    He, Y.L., Tao, W.Q.: Multiscale simulations of heat transfer and fluid flow problems. J. Heat Transfer 134 (3), 031018 (2012)CrossRefGoogle Scholar
  27. 27.
    Hou, T., Wu, X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)CrossRefGoogle Scholar
  28. 28.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul. 3(1), 50–64 (2005)CrossRefGoogle Scholar
  29. 29.
    Karvounis, D.C., Jenny, P.: Adaptive hierarchical fracture model for enhanced geothermal systems. Multiscale Model. Simul. 14(1), 207–231 (2016)CrossRefGoogle Scholar
  30. 30.
    Klepikova, M.V., Le Borgne, T., Bour, O., Dentz, M., Hochreutener, R., Lavenant, N.: Heat as a tracer for understanding transport processes in fractured media: theory and field assessment from multiscale thermal push-pull tracer tests. Water Resour. Res. 52(7), 5442–5457 (2016)CrossRefGoogle Scholar
  31. 31.
    Logg, A.: Efficient representation of computational meshes. Int. J. Comput. Sci. Eng. 4(4), 283–295 (2009)Google Scholar
  32. 32.
    Logg, A., Mardal, K.A., Wells, G.: Automated solution of differential equations by the finite element method: the FEniCS book, vol 84. Springer Science & Business Media (2012)Google Scholar
  33. 33.
    Lunati, I., Jenny, P.: Multiscale finite-volume method for compressible multiphase flow in porous media. J. Comput. Phys. 216(2), 616–636 (2006)CrossRefGoogle Scholar
  34. 34.
    Martin, V., Jaffré, J, Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)CrossRefGoogle Scholar
  35. 35.
    Nissen, A., Keilegavlen, E., Sandve, T.H., Berre, I., Nordbotten, J.M.: Heterogeneity preserving upscaling for heat transport in fractured geothermal reservoirs. Comput. Geosci., 1–17 (2017)Google Scholar
  36. 36.
    Pandey, S., Chaudhuri, A., Kelkar, S.: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics 65, 17–31 (2017)CrossRefGoogle Scholar
  37. 37.
    Pavlova, N.V., Vabishchevich, P.N., Vasilyeva, M.V.: Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems. In: International Conference on Large-Scale Scientific Computing, pp. 636–643. Springer (2013)Google Scholar
  38. 38.
    Portier, S., Vuataz, F.D.: Developing the ability to model acid-rock interactions and mineral dissolution during the rma stimulation test performed at the Soultz-sous-Forêts EGS site, France. Compt. Rendus Geosci. 342(7-8), 668–675 (2010)CrossRefGoogle Scholar
  39. 39.
    Praditia, T., Helmig, R., Hajibeygi, H.: Multiscale formulation for coupled flow-heat equations arising from single-phase flow in fractured geothermal reservoirs. Comput. Geosci., 1–18 (2018)Google Scholar
  40. 40.
    Rawal, C., Ghassemi, A.: A reactive thermo-poroelastic analysis of water injection into an enhanced geothermal reservoir. Geothermics 50, 10–23 (2014)CrossRefGoogle Scholar
  41. 41.
    Salimzadeh, S., Nick, H.M., Zimmerman, R.: Thermoporoelastic effects during heat extraction from low-permeability reservoirs. Energy 142, 546–558 (2018)CrossRefGoogle Scholar
  42. 42.
    Salimzadeh, S., Paluszny, A., Nick, H.M., Zimmerman, R.W.: A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems. Geothermics 71, 212–224 (2018)CrossRefGoogle Scholar
  43. 43.
    Sandve, T.H., Berre, I., Keilegavlen, E., Nordbotten, J.M.: Multiscale simulation of flow and heat transport in fractured geothermal reservoirs: inexact solvers and improved transport upscaling. In: Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, pp. 11–13 (2013)Google Scholar
  44. 44.
    Tambue, A., Berre, I., Nordbotten, J.M.: Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock–Euler and Rosenbrock-type methods. Adv. Water Resour. 53, 250–262 (2013)CrossRefGoogle Scholar
  45. 45.
    Ṫene, M., Al Kobaisi, M.S., Hajibeygi, H.: Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS). J. Comput. Phys. 321, 819–845 (2016)CrossRefGoogle Scholar
  46. 46.
    Ṫene, M, Bosma, S.B.M., Al Kobaisi, M.S., Hajibeygi, H.: Projection-based embedded discrete fracture model (PEDFM). Adv. Water Resour. 105, 205–216 (2017)CrossRefGoogle Scholar
  47. 47.
    Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., et al.: Impact of enhanced geothermal systems on us energy supply in the twenty-first century. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 365(1853), 1057–1094 (2007)CrossRefGoogle Scholar
  48. 48.
    Vasilyeva, M., Babaei, M., Chung, E.T., Spiridonov, D.: Multiscale modelling of heat and mass transfer in fractured media for enhanced geothermal systems (EGS) applications. Appl. Math. Model. 67, 159–178 (2018)CrossRefGoogle Scholar
  49. 49.
    Vasilyeva, M., Chung, E.T., Efendiev, Y., Kim, J.: Constrained energy minimization based upscaling for coupled flow and mechanics. arXiv:180509382 (2018)
  50. 50.
    Vasilyeva, M., Chung, E.T., Leung, W.T., Alekseev, V.: Nonlocal multicontinuum (nlmc) upscaling of mixed dimensional coupled flow problem for embedded and discrete fracture models. arXiv:180509407 (2018)
  51. 51.
    Vasilyeva, M., Chung, E.T., Leung, W.T., Wang, Y., Spiridonov, D.: Upscaling method for problems in perforated domains with non-homogeneous boundary conditions on perforations using non-local multi-continuum method (nlmc). arXiv:180509420 (2018)
  52. 52.
    Vik, H.S., Salimzadeh, S., Nick, H.M.: Heat recovery from multiple-fracture enhanced geothermal systems: the effect of thermoelastic fracture interactions. Renew. Energy 121, 606–622 (2018)CrossRefGoogle Scholar
  53. 53.
    Wang, X., Ghassemi, A.: A 3d thermal-poroelastic model for geothermal reservoir stimulation. In: Thirty-Seventh Workshop on Geothermal Reservoir Engineering (2012)Google Scholar
  54. 54.
    Wang, X., Ghassemi, A.: A three-dimensional poroelastic model for naturally fractured geothermal reservoir stimulation In: GRC Annual Meeting. Las Vegas (2013)Google Scholar
  55. 55.
    Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3(03), 245–255 (1963)CrossRefGoogle Scholar
  56. 56.
    Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2(3), 367–450 (2007)Google Scholar
  57. 57.
    Willems, C.J.L., Nick, H.M., Weltje, G.J., Bruhn, D.F.: An evaluation of interferences in heat production from low enthalpy geothermal doublets systems. Energy 135, 500–512 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.North Eastern Federal UniversityYakutskRussia
  3. 3.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  4. 4.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations