HexaShrink, an exact scalable framework for hexahedral meshes with attributes and discontinuities: multiresolution rendering and storage of geoscience models

  • Jean-Luc Peyrot
  • Laurent DuvalEmail author
  • Frédéric Payan
  • Lauriane Bouard
  • Lénaïc Chizat
  • Sébastien Schneider
  • Marc Antonini
Open Access
Original Paper


With huge data acquisition progresses realized in the past decades and acquisition systems now able to produce high resolution grids and point clouds, the digitization of physical terrains becomes increasingly more precise. Such extreme quantities of generated and modeled data greatly impact computational performances on many levels of high-performance computing (HPC): storage media, memory requirements, transfer capability, and finally simulation interactivity, necessary to exploit this instance of big data. Efficient representations and storage are thus becoming “enabling technologies” in HPC experimental and simulation science. We propose HexaShrink, an original decomposition scheme for structured hexahedral volume meshes. The latter are used for instance in biomedical engineering, materials science, or geosciences. HexaShrink provides a comprehensive framework allowing efficient mesh visualization and storage. Its exactly reversible multiresolution decomposition yields a hierarchy of meshes of increasing levels of details, in terms of either geometry, continuous or categorical properties of cells. Starting with an overview of volume meshes compression techniques, our contribution blends coherently different multiresolution wavelet schemes in different dimensions. It results in a global framework preserving discontinuities (faults) across scales, implemented as a fully reversible upscaling at different resolutions. Experimental results are provided on meshes of varying size and complexity. They emphasize the consistency of the proposed representation, in terms of visualization, attribute downsampling and distribution at different resolutions. Finally, HexaShrink yields gains in storage space when combined to lossless compression techniques.


Compression Corner point grid Discrete wavelet transform Geometrical discontinuities Hexahedral volume meshes High-performance computing Multiscale methods Simulation Upscaling 



The authors would like to thank C. Dawson and M. F. Wheeler for their help, as well as the reviewers whose comments helped improve the compression performance assessment and comparison.


  1. 1.
    Peyrot, J.-L., Duval, L., Schneider, S., Payan, F., Antonini, M: (H)exashrink: Multiresolution compression of large structured hexahedral meshes with discontinuities in geosciences. In: Proc. Int. Conf. Image Process., pp. 1101–1105. Phoenix (2016)Google Scholar
  2. 2.
    Kober, C., Müller-Hannemann, M.: A case study in hexahedral mesh generation: simulation of the human mandible. Eng. Comput. 17(3), 249–260 (2001)CrossRefGoogle Scholar
  3. 3.
    Owen, S.J., Brown, J.A., Ernst, C.D., Lim, H., Long, K.N.: Hexahedral mesh generation for computational materials modeling. Procedia Eng. 203, 167–179 (2017)CrossRefGoogle Scholar
  4. 4.
    Cannon, S.: Reservoir Modelling: A Practical Guide. Wiley (2018)Google Scholar
  5. 5.
    Caumon, G., Gray, G., Antoine, C., Titeux, M. -O.: Three-dimensional implicit stratigraphic model building from remote sensing data on tetrahedral meshes: theory and application to a regional model of La Popa basin, NE Mexico. IEEE Trans. Geosci. Remote Sens. 51(3), 1613–1621 (2013)CrossRefGoogle Scholar
  6. 6.
    Lie, K.-A., Møyner, O., Natvig, J.R., Kozlova, A., Bratvedt, K., Watanabe, S., Li, Z.: Successful application of multiscale methods in a real reservoir simulator environment. Computat. Geosci. 21(5-6), 981–998 (2017)CrossRefGoogle Scholar
  7. 7.
    Perrons, R.K., Jensen, J.W.: Data as an asset: what the oil and gas sector can learn from other industries about ”big data”. Energy Pol. 81, 117–121 (2015)CrossRefGoogle Scholar
  8. 8.
    Cannon, S.: Simulation and Upscaling, pp. 181–204. Wiley (2018)Google Scholar
  9. 9.
    Dupont, F., Lavoué, G., Antonini, M.: 3D mesh compression. In: Lucas, L., Loscos, C., Remion, Y (eds.) 3D Video from Capture to Diffusion. Wiley-ISTE (2013)Google Scholar
  10. 10.
    Røe, P., Hauge, R.: A volume-conserving representation of cell faces in corner point grids. Computat. Geosci. 20(3), 453–460 (2016)CrossRefGoogle Scholar
  11. 11.
    Lie, K.-A.: An Introduction to Reservoir Simulation Using MATLAB. User Guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT, Departement of Applied Mathematics (2016)Google Scholar
  12. 12.
    Salomon, D., Motta, G.: Handbook of Data Compression. Springer (2009)Google Scholar
  13. 13.
    Szymczak, A., Rossignac, J.: Grow & fold: Compressing the connectivity of tetrahedral meshes. Comput. Aided Des. 32(8-9), 527–537 (2000)CrossRefGoogle Scholar
  14. 14.
    Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE Trans. Visual Comput. Graph. 5(1), 47–61 (1999)CrossRefGoogle Scholar
  15. 15.
    Gumhold, S., Straßer, W.: Real time compression of triangle mesh connectivity. In: Proc. SIGGRAPH Int. Conf. Comput. Graph. Interactive Tech., pp. 133–140 (1998)Google Scholar
  16. 16.
    Gumhold, S., Guthe, S., Straßer, W.: Tetrahedral mesh compression with the cut-border machine. In: Proc. IEEE Visualization Conf., pp. 51–58 (1999)Google Scholar
  17. 17.
    Isenburg, M., Alliez, P.: Compressing hexahedral volume meshes. Graph. Model. 65(4), 239–257 (2003)CrossRefGoogle Scholar
  18. 18.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Proc. Graphics Interface Conf., pp. 26–34. Vancouver, (1998)Google Scholar
  19. 19.
    Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  20. 20.
    Krivograd, S., Trlep, M., žalik, B.: A hexahedral mesh connectivity compression with vertex degrees. Comput. Aided Des. 40(12), 1105–1112 (2008)CrossRefGoogle Scholar
  21. 21.
    Lindstrom, P., Isenburg, M.: Lossless compression of hexahedral meshes. In: Proc. Data Compression Conf., pp. 192–201 (2008)Google Scholar
  22. 22.
    Ibarria, L., Lindstrom, P., Rossignac, J.: Spectral predictors. In: Proc. Data Compression Conf., pp. 163–172 (2007)Google Scholar
  23. 23.
    Chen, D., Chiang, Y.-J., Memon, N., Wu, X.: Geometry compression of tetrahedral meshes using optimized prediction. In: Proc. Eur. Sig. Image Proc. Conf., pp. 4–8 (2005)Google Scholar
  24. 24.
    Isenburg, M., Lindstrom, P., Snoeyink, J.: Streaming compression of triangle meshes. In: Proc. Eurographics Symp. Geom. Process., vol. 255, pp. 111–118 (2005)Google Scholar
  25. 25.
    Isenburg, M., Lindstrom, P., Gumhold, S., Shewchuk, J.: Streaming compression of tetrahedral volume meshes. In: Proc. Graphics Interface, pp. 115–121 (2006)Google Scholar
  26. 26.
    Courbet, C., Isenburg, M.: Streaming compression of hexahedral meshes. Vis. Comput. 26(6-8), 1113–1122 (2010)CrossRefGoogle Scholar
  27. 27.
    Pajarola, R., Rossignac, J., Szymczak, A.: Implant sprays: Compression of progressive tetrahedral mesh connectivity. In: Proc. IEEE Visualization Conf., pp. 299–305 (1999)Google Scholar
  28. 28.
    Staadt, O.G., Gross, M.H.: Progressive tetrahedralizations. In: Proc. IEEE Visualization Conf., pp. 397–402 (1998)Google Scholar
  29. 29.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proc. ACM SIGGRAPH Comput. Graph., pp. 19–26 (1993)Google Scholar
  30. 30.
    Danovaro, E., De Floriani, L., Lee, M.T., Samet, H.: Multiresolution tetrahedral meshes: an analysis and a comparison. In: Proc. Shape Modeling International, pp. 83–91 (2002)Google Scholar
  31. 31.
    Jacques, L., Duval, L., Chaux, C., Peyré, G.: A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity. Signal Process. 91(12), 2699–2730 (2011)CrossRefGoogle Scholar
  32. 32.
    Boscardín, L.B., Castro, L.R., Castro, S.M., Giusti, A.D.: Wavelets bases defined over tetrahedra. INSTEC J. Comput. Sci. Technol. 6(1), 46–52 (2006)Google Scholar
  33. 33.
    Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)CrossRefGoogle Scholar
  34. 34.
    Chizat, L.: Multiresolution Signal Compression: Exploration and Application. M.S. thesis, ENS Cachan (2014)Google Scholar
  35. 35.
    Chaux, C., Pesquet, J.-C., Duval, L.: Noise covariance properties in dual-tree wavelet decompositions. IEEE Trans. Inform. Theory 53(12), 4680–4700 (2007)CrossRefGoogle Scholar
  36. 36.
    Chaux, C., Duval, L., Benazza-Benyahia, A., Pesquet, J.-C.: A nonlinear Stein based estimator for multichannel image denoising. IEEE Trans. Signal Process. 56(8), 3855–3870 (2008)CrossRefGoogle Scholar
  37. 37.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Analysis 3(2), 186–200 (1996)CrossRefGoogle Scholar
  38. 38.
    Bruekers, F.A.M.L., van den Enden, A.W.M.: New networks for perfect inversion and perfect reconstruction. IEEE J. Sel. Areas Comm. 10(1), 129–137 (1992)CrossRefGoogle Scholar
  39. 39.
    Rao, R.M., Bopardikar, A.S.: Wavelet Transforms: Introduction to Theory and Applications. Prentice Hall (1998)Google Scholar
  40. 40.
    Kovačević, J., Goyal, V., Vetterli, M: Signal Processing Fourier and Wavelet Representations (2012)Google Scholar
  41. 41.
    Rezapour, A., Ortega, A., Sahimi, M.: Upscaling of geological models of oil reservoirs with unstructured grids using lifting-based graph wavelet transforms. Transp Porous Med. (2019)Google Scholar
  42. 42.
    Le Gall, D., Tabatabai, A.: Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. In: Proc. Int. Conf. Acoust. Speech Signal Process., pp. 11–14 (1988)Google Scholar
  43. 43.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. ACM 45(5), 485–560 (1992)Google Scholar
  44. 44.
    Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.: Wavelet transforms that map integers to integers. Appl. Comput. Harmon. Analysis 5(3), 332–369 (1998)CrossRefGoogle Scholar
  45. 45.
    Antonini, M., Payan, F., Schneider, S., Duval, L., Peyrot, J.-L.: Method of exploitation of hydrocarbons of an underground formation by means of optimized scaling. Patent (2017)Google Scholar
  46. 46.
    Pettersen, Ø: Basics of reservoir simulation with the Eclipse reservoir simulator. Department of Mathematics, University of Bergen, Norway. Lecture Notes (2006)Google Scholar
  47. 47.
    ITU-T T.809: JPEG2000 image coding system: Extensions for three-dimensional data. ISO/IEC 15444-10:2011 (2011)Google Scholar
  48. 48.
    Isenburg, M., Gumhold, S.: Out-of-core compression for gigantic polygon meshes. In: Proc. SIGGRAPH Int. Conf. Comput. Graph. Interactive Tech., pp. 935–942 (2003)CrossRefGoogle Scholar
  49. 49.
    Nelson, M., Gailly, J. -L.: The Data Compression Book. Wiley (1995)Google Scholar
  50. 50.
    Abdelfattah, M.S., Hagiescu, A., Singh, D.: Gzip on a chip: High performance lossless data compression on FPGAs using OpenCL. In: Proc. Int. Workshop OpenCL, pp. 12–13 (2014)Google Scholar
  51. 51.
    Misaghian, N., Assareh, M., Sadeghi, M.: An upscaling approach using adaptive multi-resolution upgridding and automated relative permeability adjustment. Computat. Geosci. 22(1), 261–282 (2018)CrossRefGoogle Scholar
  52. 52.
    Lu, T., Liu, Q., He, X., Luo, H., Suchyta, E., Choi, J., Podhorszki, N., Klasky, S., Wolf, M., Liu, T., Qiao, Z.: Understanding and modeling lossy compression schemes on HPC scientific data. In: IEEE International Parallel and Distributed Processing Symposium, pp. 21–25 (2018)Google Scholar
  53. 53.
    Liang, X., Di, S., Tao, D., Li, S., Li, S., Guo, H., Chen, Z., Cappello, F.: Error-controlled lossy compression optimized for high compression ratios of scientific datasets. In: IEEE Int. Conf. Big Data, pp. 10–13 (2018)Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.IFP Energies nouvellesSolaizeFrance
  2. 2.IFP Energies nouvellesRueil-MalmaisonFrance
  3. 3.ESIEE ParisUniversity Paris-Est, LIGMNoisy-le-GrandFrance
  4. 4.CNRS, I3SUniversité Côte d’AzurSophia AntipolisFrance
  5. 5.INRIA, ENSPSL Research University ParisParisFrance
  6. 6.HoloMakeMeudonFrance

Personalised recommendations