Advertisement

A nodal discontinuous Galerkin finite element method for the poroelastic wave equation

  • Khemraj ShuklaEmail author
  • Jan S. Hesthaven
  • José M. Carcione
  • Ruichao Ye
  • Josep de la Puente
  • Priyank Jaiswal
Article
  • 10 Downloads

Abstract

We use the nodal discontinuous Galerkin method with a Lax-Friedrich flux to model the wave propagation in transversely isotropic and poroelastic media. The effect of dissipation due to global fluid flow causes a stiff relaxation term, which is incorporated in the numerical scheme through an operator splitting approach. The well-posedness of the poroelastic system is proved by adopting an approach based on characteristic variables. An error analysis for a plane wave propagating in poroelastic media shows a convergence rate of O(hn+ 1). Computational experiments are shown for various combinations of homogeneous and heterogeneous poroelastic media.

Keywords

Waves Poroelasticity Lax-Friedrich Attenuation Numerical flux 

Mathematics Subject Classification (2010)

35L05 35S99 65M60 74J05 74J10 93C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

KS would like to acknowledge the School of Geology, OSU and the MCSS, EPFL Switzerland, for providing the fund to carry out this work. We also acknowledge the OGS, Italy for hosting KS at various occasions. We thank editors and three anonymous reviewers for very useful comments. KS would like to acknowledge Sundeep Sharma at Devon Energy, for various discussions and proof-reading the manuscript. This is Boone Pickens School of Geology, Oklahoma State University, contribution number 2019-100.

References

  1. 1.
    Allard, J., Atalla, N.: Propagation of sound in porous media: Modelling Sound Absorbing Materials. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  2. 2.
    Badiey, M., Jaya, I., Cheng, A.H.: Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor. J. Comput. Acoust. 2, 11–27 (1994)CrossRefGoogle Scholar
  3. 3.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)CrossRefGoogle Scholar
  4. 4.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid: II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)CrossRefGoogle Scholar
  5. 5.
    Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)CrossRefGoogle Scholar
  6. 6.
    Cockburn, B., Shu, C.W.: Runge–kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)CrossRefGoogle Scholar
  7. 7.
    Coussy, O., Zinszner, B.: Acoustics of porous media. Editions Technip (1987)Google Scholar
  8. 8.
    Carcione, J.M., Quiroga-Goode, G.: Some aspects of the physics and numerical modeling of Biot compressional waves. J. Comput. Acoust. 3, 261–280 (1995)CrossRefGoogle Scholar
  9. 9.
    Carcione, J.M.: Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation. J. Acoust. Soc. Am. 99, 2655–2666 (1996)CrossRefGoogle Scholar
  10. 10.
    Carcione, J.M., Morency, C., Santos, J.E.: Computational poroelasticity—A review. Geophysics 75, 229–243 (2010)Google Scholar
  11. 11.
    Carcione, J.M.: Wave Fields in Real Media: Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd edn. Elsevier Science, New York City (2014)Google Scholar
  12. 12.
    de la Puente, J., Käser, M., Dumbser, M., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-IV. Anisotropy. Geophys. J. Int. 169, 1210–1228 (2007)CrossRefGoogle Scholar
  13. 13.
    de la Puente, J., Dumbser, M., Käser, M., Igel, H.: Discontinuous Galerkin methods for wave propagation in poroelastic media. Geophysics 73(2008), 77–97 (2008)CrossRefGoogle Scholar
  14. 14.
    Dablain, M.A.: The application of high-order differencing to the scalar wave equation. Geophysics 51, 54–66 (1986)CrossRefGoogle Scholar
  15. 15.
    Dai, N., Vafidis, A., Kanasewich, E.R.: Wave propagation in heterogeneous, porous media: a velocity-stress, finite-difference method. Geophysics 60, 327–340 (1995)CrossRefGoogle Scholar
  16. 16.
    Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)CrossRefGoogle Scholar
  17. 17.
    Dupuy, B., De Barros, L., Garambois, S., Virieux, J.: Wave propagation in heterogeneous porous media formulated in the frequency-space domain using a discontinuous Galerkin method. Geophysics 76(4), N13–N28 (2011)CrossRefGoogle Scholar
  18. 18.
    Etgen, J.T., Dellinger, J.: Accurate wave-equation modeling. SEG Technical Program Expanded Abstracts, 494–497 (1989)Google Scholar
  19. 19.
    Garg, S.K., Nayfeh, A.H., Good, A.J.: Compressional waves in fluid-saturated elastic porous media. J. Appl. Phys. 45, 1968–1974 (1974)CrossRefGoogle Scholar
  20. 20.
    Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(2006), 2408–2431 (2006)CrossRefGoogle Scholar
  21. 21.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science & Business Media, Berlin (2007)Google Scholar
  22. 22.
    Hunter, R.J.: Foundations of Colloid Science. Oxford University Press, Oxford (2001)Google Scholar
  23. 23.
    Käser, M., Dumbser, M., De La Puente, J., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation. Geophys. J. Int. 168, 224–242 (2007)CrossRefGoogle Scholar
  24. 24.
    Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998)Google Scholar
  25. 25.
    Lemoine, G.I., Ou, M.Y., LeVeque, R.J.: High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media. SIAM J. Sci. Comput. 35, 176–206 (2013)CrossRefGoogle Scholar
  26. 26.
    Levander, A.R.: Fourth-order finite-difference p-SV seismograms. Geophysics 53, 1425–1436 (1988)CrossRefGoogle Scholar
  27. 27.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic problems. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  28. 28.
    Özdenvar, T., McMechan, G.A.: Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations. Geophys. Prospect. 45, 403–420 (1997)CrossRefGoogle Scholar
  29. 29.
    Pride, S.R.: Relationships between seismic and hydrological properties. Hydrogeophysics, 253–290 (2005)Google Scholar
  30. 30.
    Sahay, P.N.: Natural field variables in dynamic poroelasticity. SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 1163–1166 (1994)Google Scholar
  31. 31.
    Santos, J.E., Oreña, E.J.: Elastic wave propagation in fluid-saturated porous media- Part II The Galerkin procedures. Mathematical Modelling and Numerical Analysis 20, 129–139 (1986)CrossRefGoogle Scholar
  32. 32.
    Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)CrossRefGoogle Scholar
  33. 33.
    Ward, N.D., Lähivaara, T., Eveson, S.: A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case. J. Comput. Phys. 350(2017), 690–727 (2017)CrossRefGoogle Scholar
  34. 34.
    Wheatley, V., Kumar, H., Huguenot, P.: On the role of Riemann solvers in discontinuous Galerkin methods for magnetohydrodynamics. J. Comput. Phys. 229(3), 660–680 (2010)CrossRefGoogle Scholar
  35. 35.
    Ye, R., de Hoop, M.V., Petrovitch, C.L., Pyrak-Nolte, L.J., Wilcox, L.C.: A discontinuous Galerkin method with a modified penalty flux for the propagation and scattering of acousto-elastic waves. Geophys. J. Int. 205, 1267–1289 (2016)CrossRefGoogle Scholar
  36. 36.
    Zeng, Y., He, J., Liu, Q.: The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics 66(4), 1258–1266 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khemraj Shukla
    • 1
    Email author
  • Jan S. Hesthaven
    • 2
  • José M. Carcione
    • 3
  • Ruichao Ye
    • 4
  • Josep de la Puente
    • 5
  • Priyank Jaiswal
    • 1
  1. 1.Oklahoma State UniversityStillwaterUSA
  2. 2.MCSSEPFLLausanneSwitzerland
  3. 3.Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS)SgonicoItaly
  4. 4.Rice UniversityHoustonUSA
  5. 5.Barcelona Supercomputing Center (BSC)BarcelonaSpain

Personalised recommendations