Advertisement

A lattice-Boltzmann study of permeability-porosity relationships and mineral precipitation patterns in fractured porous media

  • Mehrdad Ahkami
  • Andrea Parmigiani
  • Paolo Roberto Di Palma
  • Martin O. Saar
  • Xiang-Zhao KongEmail author
Original Paper
  • 17 Downloads

Abstract

Mineral precipitation can drastically alter a reservoir’s ability to transmit mass and energy during various engineering/natural subsurface processes, such as geothermal energy extraction and geological carbon dioxide sequestration. However, it is still challenging to explain the relationships among permeability, porosity, and precipitation patterns in reservoirs, particularly in fracture-dominated reservoirs. Here, we investigate the pore-scale behavior of single-species mineral precipitation reactions in a fractured porous medium, using a phase field lattice-Boltzmann method. Parallel to the main flow direction, the medium is divided into two halves, one with a low-permeability matrix and one with a high-permeability matrix. Each matrix contains one flow-through and one dead-end fracture. A wide range of species diffusivity and reaction rates is explored to cover regimes from advection- to diffusion-dominated, and from transport- to reaction-limited. By employing the ratio of the Damköhler (Da) and the Peclet (Pe) number, four distinct precipitation patterns can be identified, namely (1) no precipitation (Da/Pe < 1), (2) near-inlet clogging (Da/Pe > 100), (3) fracture isolation (1 < Da/Pe < 100 and Pe > 1), and (4) diffusive precipitation (1 < Da/Pe < 100 and Pe < 0.1). Using moment analyses, we discuss in detail the development of the species (i.e., reactant) concentration and mineral precipitation fields for various species transport regimes. Finally, we establish a general relationship among mineral precipitation pattern, porosity, and permeability. Our study provides insights into the feedback loop of fluid flow, species transport, mineral precipitation, pore space geometry changes, and permeability in fractured porous media.

Keywords

Lattice-Boltzmann method Fractured porous media Mineral precipitation patterns Permeability-porosity relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by ETH Grant ETH-12 15-2. The Werner Siemens Foundation (Werner Siemens-Stiftung) is further thanked by Martin Saar for its support of the Geothermal Energy and Geofluids (GEG.ethz.ch) Group at ETH Zurich. We thank the two anonymous reviewers for their helpful comments and suggestions that improved this paper.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ahkami, M., Roesgen, T., Saar, M.O., Kong, X.Z.: High-resolution temporo-ensemble PIV to resolve pore-scale flow in 3D-printed fractured porous media. Transport in Porous Media. ISSN 15731634. http://link.springer.com/10.1007/s11242-018-1174-3 (2018)
  2. 2.
    Souto, H.P.A., Moyne, C.: Dispersion in two-dimensional periodic porous media. Part ii. Dispersion tensor. Phys. Fluids 9(8), 2253–2263 (1997)CrossRefGoogle Scholar
  3. 3.
    Battiato, I., Tartakovsky, D.M.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120, 18–26 (2011)CrossRefGoogle Scholar
  4. 4.
    Battiato, I., Tartakovsky, D.M., Tartakovsky, A.M., Scheibe, T.D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34(9), 1140–1150 (2011)CrossRefGoogle Scholar
  5. 5.
    Beckingham, L.E.: Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios. Water Resour. Res. 53(12), 10217–10230 (2017)CrossRefGoogle Scholar
  6. 6.
    Brenner, H.: Dispersion resulting from flow through spatially periodic porous media. Philos. Trans. R. Soc. London. Series A Math. Phys. Sci. 297(1430), 81–133 (1980)CrossRefGoogle Scholar
  7. 7.
    Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)Google Scholar
  8. 8.
    Chen, L., Zhang, R., Min, T., Kang, Q., Tao, W.: Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media. Chem. Eng. J. 349, 428–437 (2018). ISSN 13858947CrossRefGoogle Scholar
  9. 9.
    Daccord, G., Lietard, O., Lenormand, R.: Chemical dissolution of a porous medium by a reactive fluid—ii. Convection vs reaction, behavior diagram. Chem. Eng. Sci. 48(1), 179–186 (1993)CrossRefGoogle Scholar
  10. 10.
    Davis, M.A., Walsh, S.D.C., Saar, M.O.: Statistically reconstructing continuous isotropic and anisotropic two-phase media while preserving macroscopic material properties. Phys. Rev. E 83(2), 026706 (2011)CrossRefGoogle Scholar
  11. 11.
    Flekkøy, E.G., Oxaal, U., Feder, J., Jøssang, T.: Hydrodynamic dispersion at stagnation points: simulations and experiments. Phys. Rev. E. 52(5), 4952 (1995)CrossRefGoogle Scholar
  12. 12.
    Flukiger, F., Bernard, D.: A new numerical model for pore scale dissolution of calcite due to co2 saturated water flow in 3d realistic geometry: principles and first results. Chem. Geol. 265(1–2), 171–180 (2009)CrossRefGoogle Scholar
  13. 13.
    Ghezzehei, T.A.: Linking sub-pore scale heterogeneity of biological and geochemical deposits with changes in permeability. Adv. Water Resour. 39, 1–6 (2012)CrossRefGoogle Scholar
  14. 14.
    Grosfils, P., Boon, J.P.: Viscous fingering in miscible, immiscible and reactive fluids. Int. J. Modern Phys. B 17(01n02), 15–20 (2003)CrossRefGoogle Scholar
  15. 15.
    Grosfils, P., Boon, J.P., Chin, J., Boek, E.S.: Structural and dynamical characterization of hele–shaw viscous fingering. Philos. Trans. R. Soc. London. Series A: Math. Phys. Eng. Sci. 362(1821), 1723–1734 (2004)CrossRefGoogle Scholar
  16. 16.
    Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65(4), 046308 (2002)CrossRefGoogle Scholar
  17. 17.
    Hoefner, M.L., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J 34(1), 45–54 (1988)CrossRefGoogle Scholar
  18. 18.
    Horn, F.J.M.: Calculation of dispersion coefficients by means of moments. AIChE J 17(3), 613–620 (1971)CrossRefGoogle Scholar
  19. 19.
    Huber, C., Shafei, B., Parmigiani, A.: A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation. Geochim. Cosmochim. Acta 124, 109–130 (2014)CrossRefGoogle Scholar
  20. 20.
    Kang, Q., Zhang, D., Chen, S., He, X.: Lattice Boltzmann simulation of chemical dissolution in porous media. Phys. Rev. E 65(3), 036318 (2002)CrossRefGoogle Scholar
  21. 21.
    Kang, Q., Lichtner, P.C., Zhang, D.: Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J. Geophys. Res.: Solid Earth 111(5), 1–12 (2006). ISSN 21699356Google Scholar
  22. 22.
    Kang, Q., Lichtner, P.C., Janecky, D.R.: Lattice boltzmann method for reacting flows in porous media. Adv. Appl. Math. Mech 2(5), 545–563 (2010)CrossRefGoogle Scholar
  23. 23.
    Kang, Q., Chen, L., Valocchi, A.J., Viswanathan, H.S.: Pore-scale study of dissolution-induced changes in permeability and porosity of porous media. J. Hydrol. 517, 1049–1055 (2014)CrossRefGoogle Scholar
  24. 24.
    Katz, G.E., Berkowitz, B., Guadagnini, A., Saaltink, M.W.: Experimental and modeling investigation of multicomponent reactive transport in porous media. J. Contam. Hydrol. 120, 27–44 (2011)CrossRefGoogle Scholar
  25. 25.
    Kim, D., Peters, C.A., Lindquist, W.B.: Upscaling geochemical reaction rates accompanying acidic co2-saturated brine flow in sandstone aquifers. Water Resour. Res. 47, 1 (2011)CrossRefGoogle Scholar
  26. 26.
    Kong, X.-Z., Saar, M.O.: Numerical study of the effects of permeability heterogeneity on density-driven convective mixing during co2 dissolution storage. Int. J. Greenhouse Gas Control 19, 160–173 (2013)CrossRefGoogle Scholar
  27. 27.
    Laleian, A., Valocchi, A., Werth, C.: An incompressible, depth-averaged lattice Boltzmann method for liquid flow in microfluidic devices with variable aperture. Computation 3(4), 600–615 (2015)CrossRefGoogle Scholar
  28. 28.
    Lapidus, L., Amundson, N.R.: Mathematics of adsorption in beds. vi. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J. Phys. Chem. 56(8), 984–988 (1952)CrossRefGoogle Scholar
  29. 29.
    Leverett, M.C.: Capillary behavoir in porous solids. Trans. AIME 142, 159–172 (1941)Google Scholar
  30. 30.
    Li, L., Peters, C.A., Celia, M.A.: Upscaling geochemical reaction rates using pore-scale network modeling. Adv. Water Resour. 29(9), 1351–1370 (2006)CrossRefGoogle Scholar
  31. 31.
    Liu, H.-H., Zhang, G., Yi, Z., Wang, Y.: A permeability-change relationship in the dryout zone for co2 injection into saline aquifers. Int. J. Greenhouse Gas Control 15, 42–47 (2013)CrossRefGoogle Scholar
  32. 32.
    Luhmann, A.J., Kong, X.-Z., Tutolo, B.M., Garapati, N., Bagley, B.C., Saar, M.O., Seyfried, JrW E: Experimental dissolution of dolomite by co2-charged brine at 100 c and 150 bar: evolution of porosity, permeability, and reactive surface area. Chem. Geol. 380, 145–160 (2014)CrossRefGoogle Scholar
  33. 33.
    Luquot, L., Rodriguez, O., Gouze, P.: Experimental characterization of porosity structure and transport property changes in limestone undergoing different dissolution regimes. Transp. Porous Media 101(3), 507–532 (2014)CrossRefGoogle Scholar
  34. 34.
    Mehmani, Y., Sun, T., Balhoff, M.T., Eichhubl, P., Bryant, S.: Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration. Transp. Porous Media 95(2), 305–326 (2012)CrossRefGoogle Scholar
  35. 35.
    Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48, 3 (2012)CrossRefGoogle Scholar
  36. 36.
    Niu, Q., Zhang, C.: Permeability prediction in rocks experiencing mineral precipitation and dissolution: a numerical study. Water Resources Research (2019)Google Scholar
  37. 37.
    Nogues, J.P., Fitts, J.P., Celia, M.A., Peters, C.A.: Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks. Water Resour. Res. 49(9), 6006–6021 (2013)CrossRefGoogle Scholar
  38. 38.
    Noiriel, C., Steefel, C.I., Yang, L., Bernard, D.: Effects of pore-scale precipitation on permeability and flow. Adv. Water Resour. 95, 125–137 (2016). ISSN 03091708CrossRefGoogle Scholar
  39. 39.
    Parmigiani, A., Huber, C., Bachmann, O., Chopard, B.: Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 40–76 (2011)CrossRefGoogle Scholar
  40. 40.
    Parmigiani, A, Di Palma, P.R., Leclaire, S., Habib, F., Kong, X.-Z.: Characterization of transport-enhanced phase separation in porous media using a lattice-Boltzmann method. Geofluids,  https://doi.org/10.1155/2019/5176410 (2019)CrossRefGoogle Scholar
  41. 41.
    Qian, Y., D’Humieres, D., Lallemand, P.: {L}attice {BGK} models for the {N}avier-{S}tokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefGoogle Scholar
  42. 42.
    Saar, M.O., Manga, M.: In vesicular basalts. Geophys. Res. Lett. 26(1), 111–114 (1999)CrossRefGoogle Scholar
  43. 43.
    Shih, H.C., Huang, C.L.: Image analysis and interpretation for semantics categorization in baseball video. Proceedings ITCC 2003, International Conference on Information Technology: Computers and Communications 94(3), 379–383 (2003). ISSN 0031-899X.  https://doi.org/10.1109/ITCC.2003.1197559 Google Scholar
  44. 44.
    Singh, M., Mohanty, K.K.: Permeability of spatially correlated porous media. Chem. Eng. Sci. 55(22), 5393–5403 (2000)CrossRefGoogle Scholar
  45. 45.
    Steefel, C.I., Lasaga, A.C.: Evolution of dissolution patterns: permeability change due to coupled flow and reaction. Chem. Model. Aqueous Syst. II(416), 212–225 (1990)CrossRefGoogle Scholar
  46. 46.
    Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294(5), 529–592 (1994)CrossRefGoogle Scholar
  47. 47.
    Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005)CrossRefGoogle Scholar
  48. 48.
    Stewart, M.L., Ward, A.L., Rector, D.R.: A study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann method. Adv. Water Resour. 29(9), 1328–1340 (2006)CrossRefGoogle Scholar
  49. 49.
    Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press (2001)Google Scholar
  50. 50.
    Szymczak, P., Ladd, A.J.C.: Wormhole formation in dissolving fractures. J. Geophys. Res.: Solid Earth 114, B6 (2009)CrossRefGoogle Scholar
  51. 51.
    Tartakovsky, A.M., Meakin, P., Scheibe, T.D., Wood, B.D.: A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour. Res., 43(5). ISSN 00431397. (2007)Google Scholar
  52. 52.
    Tartakovsky, A.M., Redden, G., Lichtner, P.C., Scheibe, T.D., Meakin, P.: Mixing-induced precipitation: experimental study and multiscale numerical analysis. Water Resour. Res. 44, 6 (2008)CrossRefGoogle Scholar
  53. 53.
    Tartakovsky, A.M., Scheibe, T.D., Meakin, P.: Pore-scale model for reactive transport and biomass growth. J. Porous Media 12, 5 (2009)CrossRefGoogle Scholar
  54. 54.
    Varloteaux, C., Vu, M.T., Békri, S., Adler, P.M.: Reactive transport in porous media: pore-network model approach compared to pore-scale model. Phys. Rev. E 87(2), 023010 (2013)CrossRefGoogle Scholar
  55. 55.
    Venturoli, M., Boek, E.S.: Two-dimensional lattice-Boltzmann simulations of single phase flow in a pseudo two-dimensional micromodel. Physica A: Stat. Mech. Appl. 362(1), 23–29 (2006).CrossRefGoogle Scholar
  56. 56.
    Walsh, S.D.C., Saar, M.O.: Interpolated lattice boltzmann boundary conditions for surface reaction kinetics. Phys. Rev. E 82(6), 066703 (2010)CrossRefGoogle Scholar
  57. 57.
    Walsh, S.D.C., Saar, M.O.: Macroscale lattice-Boltzmann methods for low peclet number solute and heat transport in heterogeneous porous media. Water Resour. Res., 46(7) (2010)Google Scholar
  58. 58.
    Walsh, S.D.C., Burwinkle, H., Saar, M.O.: A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput. Geosci. 35(6), 1186–1193 (2009)CrossRefGoogle Scholar
  59. 59.
    Yoon, H., Valocchi, A.J., Werth, C.J., Dewers, T.: Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network. Water Resour. Res., 48(2). ISSN 00431397.  https://doi.org/10.1029/2011WR011192 (2012)
  60. 60.
    Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23(1), 1–30 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Geothermal Energy and Geofluids Group, Institute of GeophysicsETH ZurichZurichSwitzerland
  2. 2.FlowKit-NumecaLausanneSwitzerland
  3. 3.National Research Council of ItalyWater Research InstituteMontelibrettiItaly
  4. 4.Department of Earth and Environmental SciencesUniversity of MinnesotaMinneapolisUSA

Personalised recommendations