Quantitative evaluation of multiple-point simulations using image segmentation and texture descriptors

  • Mohammad Javad AbdollahifardEmail author
  • Grégoire Mariéthoz
  • Maryam Ghavim
Original Paper


Continuous growth of multiple-point simulation algorithms for modeling environmental variables necessitates a straightforward, reliable, robust, and distinctive method for evaluating the quality of output images. A good simulation method should produce realizations consistent with the training image (TI). Moreover, it should be capable of producing diverse realizations to effectively model the variability of real fields. In this paper, the pattern innovation capability is evaluated by estimating the coherence map using keypoint detection and matching, without assuming any access to the simulation process. Local binary patterns, as distinctive and effective texture descriptors, are also employed to evaluate the consistency of realizations with the TI. Our proposed method provides absolute measures in the interval [0,1], allowing MPS algorithms to be evaluated on their own. Experiments show that the produced scores are consistent with human perception and robust for different realizations obtained using the same method, allowing for a reliable judgment using a few realizations. While a human observer is highly sensitive to discontinuities and insensitive to verbatim copies, the proposed method considers both factors simultaneously.


Geostatistics Variability Texture analysis Local binary patterns Coherence map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their sincere thanks to anonymous reviewers who devoted their time and expertise to improving this paper. Their comments helped us in improving the paper presentation and proposed formulations.


  1. 1.
    Mariethoz, G., Lefebvre, S.: Bridges between multiple-point geostatistics and texture synthesis: Review and guidelines for future research. Comput. Geosci. 66, 66–80 (2014)CrossRefGoogle Scholar
  2. 2.
    Mariethoz, G., Linde, N., Jougnot, D., Rezaee, H.: Feature-preserving interpolation and filtering of environmental time series. Environ. Model Softw. 72, 71–76 (2015)CrossRefGoogle Scholar
  3. 3.
    Mariethoz, G., Caers, J.: Multiple-point geostatistics: stochastic modeling with training images. John Wiley & Sons, Hoboken (2014)CrossRefGoogle Scholar
  4. 4.
    Guardiano, F.B., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Geostatistics Troia’92, pp. 133–144. Springer, Berlin (1993)Google Scholar
  5. 5.
    Abdollahifard, M.J., Faez, K.: Fast direct sampling for multiple-point stochastic simulation. Arab. J. Geosci. 7, 1927–1939 (2014)CrossRefGoogle Scholar
  6. 6.
    Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. 46, (2010)Google Scholar
  7. 7.
    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)CrossRefGoogle Scholar
  8. 8.
    Boucher, A.: Considering complex training images with search tree partitioning. Comput. Geosci. 35, 1151–1158 (2009)CrossRefGoogle Scholar
  9. 9.
    Huysmans, M., Dassargues, A.: Direct multiple-point geostatistical simulation of edge properties for modeling thin irregularly shaped surfaces. Math. Geosci. 43, 521 (2011)CrossRefGoogle Scholar
  10. 10.
    Mariethoz, G., Straubhaar, J., Renard, P., Chugunova, T., Biver, P.: Constraining distance-based multipoint simulations to proportions and trends. Environ. Model Softw. 72, 184–197 (2015)CrossRefGoogle Scholar
  11. 11.
    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)CrossRefGoogle Scholar
  12. 12.
    Mahmud, K., Mariethoz, G., Caers, J., Tahmasebi, P., Baker, A.: Simulation of Earth textures by conditional image quilting. Water Resour. Res. 50, 3088–3107 (2014)CrossRefGoogle Scholar
  13. 13.
    Tahmasebi, P., Sahimi, M., Caers, J.: MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space. Comput. Geosci. 67, 75–88 (2014)CrossRefGoogle Scholar
  14. 14.
    Abdollahifard, M.J.: Fast multiple-point simulation using a data-driven path and an efficient gradient-based search. Comput. Geosci. 86, 64–74 (2016)CrossRefGoogle Scholar
  15. 15.
    Li, X., Mariethoz, G., Lu, D., Linde, N.: Patch-based iterative conditional geostatistical simulation using graph cuts. Water Resour. Res. 52, 6297–6320 (2016)CrossRefGoogle Scholar
  16. 16.
    Parra, A., Ortiz, J.M.: Adapting a texture synthesis algorithm for conditional multiple point geostatistical simulation. Stoch. Env. Res. Risk A. 25, 1101–1111 (2011)CrossRefGoogle Scholar
  17. 17.
    Abdollahifard, M.J., Faez, K.: Stochastic simulation of patterns using Bayesian pattern modeling. Comput. Geosci. 17, 99–116 (2013)CrossRefGoogle Scholar
  18. 18.
    Tahmasebi, P., Hezarkhani, A., Sahimi, M.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16, 779–797 (2012)CrossRefGoogle Scholar
  19. 19.
    Rezaee, H., Marcotte, D., Tahmasebi, P., Saucier, A.: Multiple-point geostatistical simulation using enriched pattern databases. Stoch. Env. Res. Risk A. 29, 893–913 (2015)CrossRefGoogle Scholar
  20. 20.
    Abdollahifard, M.J., Ahmadi, S.: Reconstruction of binary geological images using analytical edge and object models. Comput. Geosci. 89, 239–251 (2016)CrossRefGoogle Scholar
  21. 21.
    Tan, X., Tahmasebi, P., Caers, J.: Comparing training-image based algorithms using an analysis of distance. Math. Geosci. 46, 149–169 (2014)CrossRefGoogle Scholar
  22. 22.
    Lange, K., Frydendall, J., Cordua, K.S., Hansen, T.M., Melnikova, Y., Mosegaard, K.: A frequency matching method: solving inverse problems by use of geologically realistic prior information. Math. Geosci. 44, 783–803 (2012)CrossRefGoogle Scholar
  23. 23.
    Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. In: IEEE Transactions on Information theory (2003)Google Scholar
  24. 24.
    Abdollahifard, M.J., Baharvand, M., Mariéthoz, G.: Efficient training image selection for multiple-point geostatistics via analysis of contours. Comput. Geosci. 128, 41–50 (2019)CrossRefGoogle Scholar
  25. 25.
    Pérez, C., Mariethoz, G., Ortiz, J.M.: Verifying the high-order consistency of training images with data for multiple-point geostatistics. Comput. Geosci. 70, 190–205 (2014)CrossRefGoogle Scholar
  26. 26.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  27. 27.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefGoogle Scholar
  28. 28.
    Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 229–238. ACM, New York (1995)Google Scholar
  29. 29.
    Sharifzadehlari, M., Fathianpour, N., Renard, P., Amirfattahi, R.: Random partitioning and adaptive filters for multiple-point stochastic simulation. Stoch. Env. Res. Risk A. 32, 1375–1396 (2018)CrossRefGoogle Scholar
  30. 30.
    Kalantari, S., Abdollahifard, M.J.: Optimization-based multiple-point geostatistics: A sparse way. Comput. Geosci. 95, 85–98 (2016)CrossRefGoogle Scholar
  31. 31.
    Pourfard, M., Abdollahifard, M.J., Faez, K., Motamedi, S.A., Hosseinian, T.: PCTO-SIM: Multiple-point geostatistical modeling using parallel conditional texture optimization. Comput. Geosci. 102, 116–138 (2017)CrossRefGoogle Scholar
  32. 32.
    Yang, L., Hou, W., Cui, C., Cui, J.: GOSIM: a multi-scale iterative multiple-point statistics algorithm with global optimization. Comput. Geosci. 89, 57–70 (2016)CrossRefGoogle Scholar
  33. 33.
    Szeliski, R.: Computer vision: algorithms and applications. Springer Science & Business Media, Berlin (2010)Google Scholar
  34. 34.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 50, pp. 10–5244. Citeseer (1988)Google Scholar
  35. 35.
    Mariethoz, G., Kelly, B.F.: Modeling complex geological structures with elementary training images and transform-invariant distances. Water Resour. Res. 47, (2011)Google Scholar
  36. 36.
    Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica. 7, 381–413 (1992)CrossRefGoogle Scholar
  37. 37.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)CrossRefGoogle Scholar
  38. 38.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis & Machine Intelligence. 2037–2041 (2006)Google Scholar
  39. 39.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)CrossRefGoogle Scholar
  40. 40.
    Abdollahifard, M.J., Nasiri, B.: Exploiting transformation-domain sparsity for fast query in multiple-point geostatistics. Comput. Geosci. 21, 289–299 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentTafersh UniversityTafreshIran
  2. 2.Institute of Earth Surface DynamicsUniversite de LausanneLausanneSwitzerland

Personalised recommendations