Advertisement

Simultaneous assimilation of production and seismic data: application to the Norne field

  • Rolf J. LorentzenEmail author
  • Tuhin Bhakta
  • Dario Grana
  • Xiaodong Luo
  • Randi Valestrand
  • Geir Nævdal
Original Paper

Abstract

Automatic history matching using production and seismic data is still challenging due to the size of seismic datasets. The most severe problem, when applying ensemble-based methods for assimilating large datasets, is that the uncertainty is usually underestimated due to the limited number of models in the ensemble compared with the dimension of the data, which inevitably leads to an ensemble collapse. Localization and data reduction methods are promising approaches mitigating this problem. In this paper, we present a new robust and flexible workflow for assimilating seismic attributes and production data. The methodology is based on sparse representation of the seismic data, using methods developed for image denoising. We propose to assimilate production and seismic data simultaneously, and to ensure equal weight on these data types, we apply scaling based on the initial data match. Further, a newly developed flexible correlation-based localization technique is used for both data types. The workflow is successfully implemented for the released Norne benchmark dataset, and an iterative ensemble smoother is used for the simultaneous assimilation of production and seismic data. We show that the methodology is robust and ensemble collapse is avoided. Furthermore, the proposed workflow is flexible, as it can be applied to seismic data or inverted seismic properties, and the methodology requires only moderate computer memory. The results show that through this method, we can successfully reduce the data mismatch for both production data and seismic data.

Keywords

History matching Norne field Seismic inversion Petro-elastic models Fluid flow Ensemble smoother Sparse representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Equinor (operator of Norne field) and its license partners ENI and Petoro for the release of the Norne data. Further, the authors acknowledge the IOR Center for Integrated Operations at NTNU for cooperation and coordination of the Norne Cases. We also thank Schlumberger for providing academic software licenses to ECLIPSE and Petrel and CGG for providing an academic software license for HampsonRussell.

Finally, the authors acknowledge Ivar Sandø for very useful geophysical discussions.

Funding information

The authors acknowledge financial support from the CIPR/ NORCE cooperative research project “4D Seismic History Matching” which is funded by industry partners Eni, Petrobras, and Total E&P NORGE, as well as the Research Council of Norway (PETROMAKS2). We also acknowledge the Research Council of Norway and the industry partners, ConocoPhillips Skandinavia AS, Aker BP ASA, Eni Norge AS, Total E&P Norge AS, Equinor ASA, Neptune Energy Norge AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, and Wintershall DEA, of The National IOR Centre of Norway for support.

Disclaimer

The views expressed in this paper are the views of the authors and do not necessarily reflect the views of Equinor and the Norne license partners.

References

  1. 1.
    Abadpour, A., Bergey, P., Piasecki, R.: 4D seismic history matching with ensemble Kalman filter-assimilation on Hausdorff distance to saturation front. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. SPE-163635-MS (2013)Google Scholar
  2. 2.
    Aki, K., Richards, P.: Quantitative Seismology. Geology Seismology. University Science Books. https://books.google.no/books?id=pWhEPgAACAAJ (2002)
  3. 3.
    Alfonzo, M., Oliver, D., MacBeth, C.: Analysis and calibration of 4D seismic data prior to 4D seismic inversion and history matching-Norne field case. In: 79Th EAGE Conference and Exhibition 2017-Workshops (2017)Google Scholar
  4. 4.
    Bhakta, T.: Better Estimation of pressure-saturation changes from time-lapse PP-AVO data by using non-linear optimization method. In: SEG Technical Program Expanded Abstracts 2015, pp. 5456–5460. Society of Exploration Geophysicists (2015)Google Scholar
  5. 5.
    Bhakta, T., Avseth, P., Landrø, M.: Sensitivity analysis of effective fluid and rock bulk modulus due to changes in pore pressure, temperature and saturation. J. Appl. Geophys. 135, 77–89 (2016).  https://doi.org/10.1016/j.jappgeo.2016.09.012. http://www.sciencedirect.com/science/article/pii/S092698511630266X. New trends in Induced PolarizationCrossRefGoogle Scholar
  6. 6.
    Bhakta, T., Landrø, M.: Estimation of pressure-saturation changes for unconsolidated reservoir rocks with high Vp/Vs ratio. Geophysics 79(5), M35–M54 (2014)CrossRefGoogle Scholar
  7. 7.
    Bhakta, T., Luo, X., Nævdal, G.: Ensemble based 4D seismic history matching using a sparse representation of AVA data. In: SEG Technical Program Expanded Abstracts 2016, pp. 2961–2966. Society of Exploration Geophysicists (2016)Google Scholar
  8. 8.
    Buland, A., El Ouair, Y.: Bayesian time-lapse inversion. Geophysics 71(3), R43–R48 (2006)CrossRefGoogle Scholar
  9. 9.
    Buland, A., Omre, H.: Bayesian linearized AVO inversion. Geophysics 68, 185–198 (2003)CrossRefGoogle Scholar
  10. 10.
    Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000).  https://doi.org/10.1109/83.862633 CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(02), 244–256 (2014). SPE-164902-PACrossRefGoogle Scholar
  12. 12.
    Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994).  https://doi.org/10.1093/biomet/81.3.425 CrossRefGoogle Scholar
  13. 13.
    Emerick, A.A., Reynolds, A.C.: History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations. Comput. Geosci. 16, 639–659 (2012)CrossRefGoogle Scholar
  14. 14.
    Emerick, A.A., Reynolds, A.C.: History-matching production and seismic data in a real field case using the ensemble smoother with multiple data assimilation. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers. SPE-163675-MS (2013)Google Scholar
  15. 15.
    Evensen, G., Eikrem, K.S.: Conditioning reservoir models on rate data using ensemble smoothers. Comput. Geosci. 22(5), 1251–1270 (2018).  https://doi.org/10.1007/s10596-018-9750-8 CrossRefGoogle Scholar
  16. 16.
    Fahimuddin, A., Aanonsen, S., Skjervheim, J.A.: Ensemble based 4D seismic history matching–integration of different levels and types of seismic data. In: 72Nd EAGE Conference & Exhibition (2010)Google Scholar
  17. 17.
    Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. analytical comparison. Inverse Probl. 30(11), 114002 (2014).  https://doi.org/10.1088/0266-5611/30/11/114002 CrossRefGoogle Scholar
  18. 18.
    Fossum, K., Mannseth, T.: Assessment of ordered sequential data assimilation. Comput. Geosci. 19(4), 821–844 (2015).  https://doi.org/10.1007/s10596-015-9492-9 CrossRefGoogle Scholar
  19. 19.
    Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 98(2), 227–255 (2007).  https://doi.org/10.1016/j.jmva.2006.08.003 CrossRefGoogle Scholar
  20. 20.
    Gassmann, F.: ÜBer die Elastizität poröser Medien. Vierteljahresschrift Nat. Gesellschaft 96, 1–23 (1951)Google Scholar
  21. 21.
    Grana, D.: Bayesian inversion methods for seismic reservoir characterization and time-lapse studies. Ph.D. thesis, Stanford University (2013)Google Scholar
  22. 22.
    Grana, D., Mukerji, T.: Bayesian inversion of time-lapse seismic data for the estimation of static reservoir properties and dynamic property changes. Geophys. Prospect. 63(3), 637–655 (2015)CrossRefGoogle Scholar
  23. 23.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)CrossRefGoogle Scholar
  24. 24.
    Huang, X., Meister, L., Workman, R., et al.: Reservoir characterization by integration of time-lapse seismic and production data. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1997)Google Scholar
  25. 25.
    Huang, Y., Alsos, T., Sørensen, H.M., Tian, S.: Proving the value of 4D, seismic data in the late-life field–Case study of the Norne main field. First Break 31(9), 57–67 (2013)Google Scholar
  26. 26.
    IO Center/NTNU: Norne benchmark case. http://www.ipt.ntnu.no/∼norne/wiki/ (2019)
  27. 27.
    Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 59(2), 319–351 (1997).  https://doi.org/10.1111/1467-9868.00071 CrossRefGoogle Scholar
  28. 28.
    Katterbauer, K., Hoteit, I., Sun, S.: History matching of electromagnetically heated reservoirs incorporating full-wavefield seismic and electromagnetic imaging. SPE J. 20, 923–941 (2015). https://doi.org/SPE-173896-PA CrossRefGoogle Scholar
  29. 29.
    Landrø, M.: Discrimination between pressure and fluid saturation changes from time-lapse seismic data. Geophysics 66, 836–844 (2001)CrossRefGoogle Scholar
  30. 30.
    Leeuwenburgh, O., Arts, R.: Distance parameterization for efficient seismic history matching with the ensemble Kalman filter. Comput. Geosci. 18, 535–548 (2014)CrossRefGoogle Scholar
  31. 31.
    Lorentzen, R., Bhakta, T., Grana, D., Luo, X., Valestrand, R., Nævdal, G.: History matching of real production and seismic data in the Norne field. In: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery. Barcelona, Spain.  https://doi.org/10.3997/2214-4609.201802231 (2018)
  32. 32.
    Lorentzen, R.J.: Norne initial ensemble. https://github.com/rolfjl/Norne-Initial-Ensemble (2017)
  33. 33.
    Lorentzen, R.J., Luo, X., Bhakta, T., Valestrand, R.: History matching the full Norne field model using seismic and production data. SPE Journal.  https://doi.org/10.2118/194205-PA. Available online (2019)CrossRefGoogle Scholar
  34. 34.
    Luo, X., Bhakta, T.: Estimating observation error covariance matrix of seismic data from a perspective of image denoising. Comput. Geosci. 21(2), 205–222 (2017). 10.1007/s10596-016-9605-0CrossRefGoogle Scholar
  35. 35.
    Luo, X., Bhakta, T., Jakobsen, M., Nævdal, G.: An ensemble 4D-seismic history-matching framework with sparse representation based on wavelet multiresolution analysis. SPE J. 22(23), 985–1010 (2017).  https://doi.org/10.2118/180025-PA CrossRefGoogle Scholar
  36. 36.
    Luo, X., Bhakta, T., Jakobsen, M., Nævdal, G.: Efficient big data assimilation through sparse representation: a 3D benchmark case study in petroleum engineering. PLOS ONE 13, e0198586 (2018)CrossRefGoogle Scholar
  37. 37.
    Luo, X., Bhakta, T., Nævdal, G.: Correlation-based adaptive localization with applications to ensemble-based 4D seismic history matching. SPE J. 23(02). SPE-185936-PA (2018)
  38. 38.
    Luo, X., Lorentzen, R.J., Valestrand, R., Evensen, G.: Correlation-based adaptive localization for ensemble-based history matching: applied to the Norne field case study. SPE Reservoir Evaluation & Engineering, in press.  https://doi.org/10.2118/191305-PA. SPE-191305-PA (2019)CrossRefGoogle Scholar
  39. 39.
    Luo, X., Stordal, A.S., Lorentzen, R.J., Nævdal, G.: Iterative ensemble smoother as an approximate solution to a regularized minimum-average-cost problem: theory and applications. SPE J. 20(5), 962–982 (2015).  https://doi.org/10.2118/176023-PA CrossRefGoogle Scholar
  40. 40.
    Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press (2009)Google Scholar
  41. 41.
    Oliver, D.S., Alfonzo, M.: Calibration of imperfect models to biased observations. Comput. Geosci. 22(1), 145–161 (2018).  https://doi.org/10.1007/s10596-017-9678-4 CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Reuss, A.: Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J. Appl. Math. Mech./Z. Angewandte Math. Mech. 9, 49–58 (1929)CrossRefGoogle Scholar
  44. 44.
    Russell, B.H.: Introduction to seismic inversion methods, vol. 2. Society of Exploration Geophysicists Tulsa (1988)Google Scholar
  45. 45.
    Sen, M.K., Stoffa, P.L.: Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics 56(10), 1624–1638 (1991)CrossRefGoogle Scholar
  46. 46.
    Sheriff, R., Geldart, L.: Exploration seismology. Cambridge University Press. https://books.google.no/books?id=k5-EQgAACAAJ (1995)
  47. 47.
    Skjervheim, J.A., Evensen, G., Aanonsen, S.I., Ruud, B.O., Johansen, T.A.: Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. SPE J. 12, 282–292 (2007). SPE-95789-PACrossRefGoogle Scholar
  48. 48.
    Stephen, K.D., Kazemi, A.: Improved normalization of time-lapse seismic data using normalized root mean square repeatability data to improve automatic production and seismic history matching in the Nelson field. Geophys. Prospect. 62(5), 1009–1027 (2014).  https://doi.org/10.1111/1365-2478.12109 CrossRefGoogle Scholar
  49. 49.
    Stephen, K.D., Kazemi, A., Sedighi, F.: Assisted seismic history matching of the Nelson field: managing large numbers of unknowns by divide and conquer. In: EAGE Annual Conference & Exhibition incorporating SPE Europec. Copenhagen, Denmark. Paper SPE154892 (2012)Google Scholar
  50. 50.
    Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM (2005)Google Scholar
  51. 51.
    Trani, M., Arts, R., Leeuwenburgh, O.: Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE J. 18, 159–171 (2012). https://doi.org/SPE-163043-PA CrossRefGoogle Scholar
  52. 52.
    Zhang, Q., Chassagne, R., MacBeth, C.: 4D seismic and production history matching, a combined formulation using Hausdorff and FréChet metric. In: SPE Europec featured at 81st EAGE Conference and Exhibition. London, England. Paper SPE195542 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NORCE Norwegian Research Centre ASBergenNorway
  2. 2.University of WyomingLaramieUSA

Personalised recommendations