Advertisement

A polynomial chaos framework for probabilistic predictions of storm surge events

  • Pierre SochalaEmail author
  • Chen Chen
  • Clint Dawson
  • Mohamed Iskandarani
Original Paper
  • 15 Downloads

Abstract

We present a polynomial chaos-based framework to quantify the uncertainties in predicting hurricane-induced storm surges. Perturbation strategies are proposed to characterize poorly known time-dependent input parameters, such as tropical cyclone track and wind as well as space-dependent bottom stresses, using a handful of stochastic variables. The input uncertainties are then propagated through an ensemble calculation and a model surrogate is constructed to represent the changes in model output caused by changes in the model input. The statistical analysis is then performed using the model surrogate once its reliability has been established. The procedure is illustrated by simulating the flooding caused by Hurricane Gustav 2008 using the ADvanced CIRCulation model. The hurricane’s track and intensity are perturbed along with the bottom friction coefficients. A sensitivity analysis suggests that the track of the tropical cyclone is the dominant contributor to the peak water level forecast, while uncertainties in wind speed and in the bottom friction coefficient show minor contributions. Exceedance probability maps with different levels are also estimated to identify the most vulnerable areas.

Keywords

Tropical cyclones Uncertainty quantification Empirical orthogonal functions Global sensitivity analysis Exceedance probability Hurricane Gustav 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

The work of P. Sochala is supported by a funding of BRGM (French Geological Survey) through its Institut Carnot sponsored by the ANR (French National Research Agency). This research was made possible in part by a grant from The Gulf of Mexico Research Initiative to the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) and by NSF 1639722 and NSF 1818847.

References

  1. 1.
    Berg, E.V.D., Friedlander, M.P.: SPGL1: a solver for large-scale sparse reconstruction. [Available online at http://www.cs.ubc.ca/labs/scl/spgl1] (2007)
  2. 2.
    Berg, E.V.D., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comp. 31(2), 890–912 (2008).  https://doi.org/10.1137/080714488. http://link.aip.org/link/?SCE/31/890 CrossRefGoogle Scholar
  3. 3.
    Beven, J.L. II, Kimberlain, T.B.: Tropical cyclone report - hurricane Gustav. Tech. rep., National Oceanic and Atmospheric Administration/NHC. [Available online at http://www.nhc.noaa.gov/data/tcr/AL072008_Gustav.pdf] (2009)
  4. 4.
    Brown, J.D., Spencer, T., Moeller, I.: Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: a case study of Canvey Island, United Kingdom. Water Resour. Res. 43(6).  https://doi.org/10.1029/2005WR004597. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005WR004597 (2007)
  5. 5.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comp. 20, 33–61 (1998)CrossRefGoogle Scholar
  6. 6.
    Crestaux, T., Le Maître, O., Martinez, J.M.: Polynomial chaos expansion for sensitivity analysis. Reliab. Eng. and Syst. Saf. 94(7), 1161–1172 (2009)CrossRefGoogle Scholar
  7. 7.
    Cruz-Jiménez, H., Li, G., Mai, P., Hoteit, I., Knio, O.: Bayesian inference of earthquake rupture models using polynomial chaos expansion. Geosci. Model Dev. 11(7), 3071–3088 (2018).  https://doi.org/10.5194/gmd-11-3071-2018. https://www.geosci-model-dev.net/11/3071/2018/ CrossRefGoogle Scholar
  8. 8.
    Dietrich, J.C.: Coauthors: a high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part II: synoptic description and analysis of hurricanes Katrina and Rita. Mon. Weather Rev. 138(2), 378–404 (2010).  https://doi.org/10.1175/2009MWR2907.1 CrossRefGoogle Scholar
  9. 9.
    Dietrich, J.C.: Coauthors: hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in Southern Louisiana. Mon. Weather Rev. 139(8), 2488–2522 (2011).  https://doi.org/10.1175/2011MWR3611.1 CrossRefGoogle Scholar
  10. 10.
    Elsheikh, A.H., Hoteit, I., Wheeler, M.F.: Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates. Comput. Methods Appl. Mech. Engrg. 269, 515–537 (2014).  https://doi.org/10.1016/j.cma.2013.11.001. http://www.sciencedirect.com/science/article/pii/S004578251300296X CrossRefGoogle Scholar
  11. 11.
    Finocchio, P.M., Majumdar, S.J., Nolan, D.S., Iskandarani, M.: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Weather Rev. 144(6), 2155–2175 (2016).  https://doi.org/10.1175/MWR-D-15-0320.1 CrossRefGoogle Scholar
  12. 12.
    Flowerdew, J., Horsburgh, K., Wilson, C., Mylne, K.: Development and evaluation of an ensemble forecasting system for coastal storm surges. Quart. J. Roy. Meteor. Soc. 136(651), 1444–1456 (2010).  https://doi.org/10.1002/qj.648. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.648 CrossRefGoogle Scholar
  13. 13.
    Forbes, C., Luettich, R.A. JR, Mattocks, C.A., Westerink, J.J.: A retrospective evaluation of the storm surge produced by hurricane Gustav. Forecast and Hindcast Results. Weather Forecast. 25(6), 1577–1602 (2010).  https://doi.org/10.1175/2010WAF2222416.1 (2008)CrossRefGoogle Scholar
  14. 14.
    Formaggia, L., Guadagnini, A., Imperiali, I., Lever, V., Porta, G., Riva, M., Scotti, A., Tamellini, L.: Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model. Comput. Geosci. 17(1), 25–42 (2013).  https://doi.org/10.1007/s10596-012-9311-5 CrossRefGoogle Scholar
  15. 15.
    Ghanem, R.G., Spanos, S.D.: Stochastic Finite Elements: a Spectral Approach. Springer, Berlin (1991)CrossRefGoogle Scholar
  16. 16.
    Giraldi, L., Le Maître, O., Mandli, K., Dawson, C., Hoteit, I., Knio, O.: Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate. Comput. Geosci. 21(4), 683–699 (2017).  https://doi.org/10.1007/s10596-017-9646-z CrossRefGoogle Scholar
  17. 17.
    Graham, L., Butler, T., Walsh, S., Dawson, C., Westerink, J.J.: A measure-theoretic algorithm for estimating bottom friction in a coastal inlet: case study of bay St. Louis during hurricane Gustav. Mon. Weather Rev. 145(3), 929–954 (2017).  https://doi.org/10.1175/MWR-D-16-0149.1 CrossRefGoogle Scholar
  18. 18.
    Heaps, N.S.: Storm surges, 1967–1982. Geophys. J. Roy. Astro. Soc. 74(1), 331–376 (1983).  https://doi.org/10.1111/j.1365-246X.1983.tb01883.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-246X.1983.tb01883.x CrossRefGoogle Scholar
  19. 19.
    Holland, G.J.: An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108(8), 1212–1218 (1980).  https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2 CrossRefGoogle Scholar
  20. 20.
    Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. and Syst. Saf. 52(1), 1–17 (1996).  https://doi.org/10.1016/0951-8320(96)00002-6. http://www.sciencedirect.com/science/article/pii/0951832096000026 CrossRefGoogle Scholar
  21. 21.
    Houze, R.A.: Cloud Dynamics. International Geophysics. Elsevier Science. https://books.google.fr/books?id=5DKWGZwBBEYC (1994)
  22. 22.
    Irish, J.L., Resio, D.T., Cialone, M.A.: A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions. Nat. Hazards 51(1), 183–205 (2009).  https://doi.org/10.1007/s11069-009-9381-4 CrossRefGoogle Scholar
  23. 23.
    Iskandarani, M., Wang, S., Srinivasan, A., Thacker., W.C., Winokur, J., Knio, O.: An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations. J. Geophys. Res.: Oceans 121(4), 2789–2808 (2016).  https://doi.org/10.1002/2015JC011366 CrossRefGoogle Scholar
  24. 24.
    Jia, G., Taflanidis, A.A., Nadal-Caraballo, N.C., Melby, J.A., Kennedy, A.B., Smith, J.M.: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms. Nat. Hazards 81(2), 909–938 (2016).  https://doi.org/10.1007/s11069-015-2111-1 CrossRefGoogle Scholar
  25. 25.
    Kennedy, A.B.: Coauthors: origin of the hurricane Ike forerunner surge. Geophys. Res. Lett. 38(L08608).  https://doi.org/10.1029/2011GL047090. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL047090 (2011)CrossRefGoogle Scholar
  26. 26.
    Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., Rohde, C.: Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Comput. Geosci. 23(2), 339–354 (2019).  https://doi.org/10.1007/s10596-018-9785-x CrossRefGoogle Scholar
  27. 27.
    Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Scientific Computation, Springer (2010)CrossRefGoogle Scholar
  28. 28.
    Li, G., Curcic, M., Iskandarani, M., Chen, S.S., Knio, O.M.: Uncertainty propagation in coupled Atmosphere–Wave–Ocean prediction system: a study of hurricane Earl. Mon. Weather Rev. 147(1), 221–245 (2019).  https://doi.org/10.1175/MWR-D-17-0371.1 CrossRefGoogle Scholar
  29. 29.
    Li, G., Iskandarani, M., Le Hénaff, M., Winokur, J., Le Maître, O.P., Knio, O.M.: Quantifying initial and wind forcing uncertainties in the Gulf of Mexico. Comput. Geosci. 20(5), 1133–1153 (2016).  https://doi.org/10.1007/s10596-016-9581-4 CrossRefGoogle Scholar
  30. 30.
    Lin, N., Chavas, D.: On hurricane parametric wind and applications in storm surge modeling. J. Geophys. Res.: Atmospheres 117(D9), n/a–n/a (2012).  https://doi.org/10.1029/2011JD017126. D09120Google Scholar
  31. 31.
    Lorenz, E.N.: Empirical orthogonal functions and statistical weather prediction. Scientific report / MIT. Statistical Forecasting Project. Massachusetts Institute of Technology, Department of Meteorology. https://books.google.com/books?id=2cQIogEACAAJ (1956)
  32. 32.
    Luettich, R.A., Westerink J.J.: Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44.XX (2004)Google Scholar
  33. 33.
    Mayo, T., Butler, T., Dawson, C., Hoteit, I.: Data assimilation within the advanced circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient. Ocean Model. 76, 43–58 (2014).  https://doi.org/10.1016/j.ocemod.2014.01.001. http://www.sciencedirect.com/science/article/pii/S146350031400002X CrossRefGoogle Scholar
  34. 34.
    Mel, R., Viero, D.P., Carniello, L., Defina, A., D’Alpaos, L.: Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Adv. Water. Resour. 71, 177–185 (2014).  https://doi.org/10.1016/j.advwatres.2014.06.014. http://www.sciencedirect.com/science/article/pii/S0309170814001316 CrossRefGoogle Scholar
  35. 35.
    Molteni, F., Buizza, R., Palmer, T.N., Petroliagis, T.: The ECMWF ensemble prediction system: methodology and validation. Quart. J. Roy. Meteor. Soc. 122(529), 73–119 (1996).  https://doi.org/10.1002/qj.49712252905. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712252905 CrossRefGoogle Scholar
  36. 36.
    Morokoff, W.J., Caflisch, R.E.: Quasi-Monte Carlo integration. J. Comput. Phys. 122(2), 218–230 (1995).  https://doi.org/10.1006/jcph.1995.1209. http://www.sciencedirect.com/science/article/pii/S0021999185712090 CrossRefGoogle Scholar
  37. 37.
    Myers, V.A.: Storm tide frequencies on the South Carolina Coast. Tech. Rep. NWS. 16 NOAA (1975)Google Scholar
  38. 38.
    Navarro, M., Le Maître, O., Hoteit, I., George, D., Mandli, K., Knio, O.: Surrogate-based parameter inference in debris flow model. Comput. Geosci. 22(6), 1447–1463 (2018).  https://doi.org/10.1007/s10596-018-9765-1 CrossRefGoogle Scholar
  39. 39.
    NOAA/NHC: Tropical cyclone report, hurricane Gustav (AL072008). [Available online at http://ftp.nhc.noaa.gov/atcf/archive/2008/bal072008.dat.gz] (2008)
  40. 40.
    Powell, M.D.: Drag coefficient distribution and wind speed dependence in tropical cyclones. Final report to the NOAA joint hurricane testbed (JHT) program, 26p NOAA/atlantic oceanographic and meteorological laboratory (2006)Google Scholar
  41. 41.
    Resio, D.T., Powell, N.J., Cialone, M.A., Das, H.S., Westerink, J.J.: Quantifying impacts of forecast uncertainties on predicted storm surges. Nat. Hazards 88(3), 1423–1449 (2017).CrossRefGoogle Scholar
  42. 42.
    Rohmer, J., Lecacheux, S., Pedreros, R., Quetelard, H., Bonnardot, F., Idier, D.: Dynamic parameter sensitivity in numerical modelling of cyclone-induced waves: a multi-look approach using advanced meta-modelling techniques. Nat. Hazards 84(3), 1765–1792 (2016).  https://doi.org/10.1007/s11069-016-2513-8 CrossRefGoogle Scholar
  43. 43.
    Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993)Google Scholar
  44. 44.
    Sochala, P., De Martin, F.: Surrogate combining harmonic decomposition and polynomial chaos for seismic shear waves in uncertain media. Comput. Geosci.  https://doi.org/10.1007/s10596-017-9677-5 (2017)CrossRefGoogle Scholar
  45. 45.
    Sochala, P., Le Maître, O.: Polynomial Chaos expansion for subsurface flows with uncertain soil parameters. Adv. Water. Resour. 62, 139–154 (2013).  https://doi.org/10.1016/j.advwatres.2013.10.003. https://hal.archives-ouvertes.fr/hal-00931639 CrossRefGoogle Scholar
  46. 46.
    Song, Y.K., Irish, J.L., Udoh, I.E.: Regional attributes of hurricane surge response functions for hazard assessment. Nat. Hazards 64(2), 1475–1490 (2012).  https://doi.org/10.1007/s11069-012-0309-z CrossRefGoogle Scholar
  47. 47.
    Taylor, G.I.: Skin friction of the wind on the earth’s surface. Proc. Roy. Soc. London A92(637), 196–199 (1916).  https://doi.org/10.1098/rspa.1916.0005. http://rspa.royalsocietypublishing.org/content/92/637/196 CrossRefGoogle Scholar
  48. 48.
    Taylor, N.R., Irish, J.L., Udoh, I.E., Bilskie, M.V., Hagen, S.C.: Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays. Nat. Hazards 77(2), 1103–1123 (2015).  https://doi.org/10.1007/s11069-015-1646-5 CrossRefGoogle Scholar
  49. 49.
    Thompson, E.F., Cardone, V.J.: Practical modeling of hurricane surface wind fields. J. Waterw. Port. Coast. 122(4), 195–205 (1996).  https://doi.org/10.1061/(ASCE)0733-950X(1996)122:4(195). http://ascelibrary.org/doi/abs/10.1061/1996 CrossRefGoogle Scholar
  50. 50.
    Toro, G.R., Resio, D.T., Divoky, D., Niedoroda, A.W., Reed, C.: Efficient joint-probability methods for hurricane surge frequency analysis. Ocean Eng. 37(1), 125–134 (2010).  https://doi.org/10.1016/j.oceaneng.2009.09.004. http://www.sciencedirect.com/science/article/pii/S0029801809002236 CrossRefGoogle Scholar
  51. 51.
    Zheng, F., Westra, S., Leonard, M., Sisson, S.A.: Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resour. Res. 50(3), 2050–2071 (2014).  https://doi.org/10.1002/2013WR014616. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013WR014616 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pierre Sochala
    • 1
    Email author
  • Chen Chen
    • 2
  • Clint Dawson
    • 2
  • Mohamed Iskandarani
    • 3
  1. 1.BRGMOrléansFrance
  2. 2.Oden Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinUSA
  3. 3.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations