A new computational model for flow in karst-carbonates containing solution-collapse breccias

  • Tuane V. LopesEmail author
  • Aline C. Rocha
  • Marcio A. Murad
  • Eduardo L. M. Garcia
  • Patricia A. Pereira
  • Caroline L. Cazarin
Original Paper


We develop a new three-scale (micro/meso/macro) computational model based on a reiterated homogenization procedure to describe flow in carbonate rocks containing complex geological structures, such as fractures and solution-collapse breccias in the sense of Loucks (AAPG Bull. 83(11), 1795–1834, 1999). In this setting, we construct a hierarchical karst-fracture model wherein the larger geological objects are incorporated explicitly whereas the higher density microscopic structures are homogenized and replaced by equivalent continua with properties computed from self-consistent homogenization schemes. In the upscaling method, we subdivide the different clastic arrangements in the breccia into crackle, mosaic, and chaotic substructures where equivalent permeability and elastic constants are assigned to each layer within the breccia. After reconstructing the mesoscopic coefficients, we adopt a flow-based upscaling to the macroscale, where the characteristic length is associated with a typical coarse grid cell of a reservoir simulator. The mesoscopic flow equations are constructed based on the discrete fracture model (DFM) and discretized by a robust computationally scheme with the ability to handle strong heterogeneity induced by the collapse breccia and pressure jumps across flow barriers. In addition to the scenario wherein the collapse breccia network is composed of disconnected objects (isolated chambers), we also develop a reduced model for the case of connected karst facies playing the role of a network of enlarged fractures. Numerical results, with input data extracted from outcrops drone images, are presented illustrating the influence of different settings on flow patterns and their effect upon the magnitude of macroscopic properties.


Carbonate reservoir Collapsed paleocaves Damage zone Discrete fracture model Self-consistent homogenization Finite element Outcrop images Flow-based upscaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their gratitude for the financial support provided by Petrobras under the agreement number 0050.0079860.12.9, FAPERJ under the agreement number E-26/202.867/2017 and CNPQ under the agreement number 304054/2014-3.


  1. 1.
    Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)CrossRefGoogle Scholar
  2. 2.
    Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogeneous Media. ISTE Ltd, London (2009)CrossRefGoogle Scholar
  3. 3.
    Barthélémy, J.F.: Effective permeability of media with a dense network of long and micro fractures. Transp. Porous Media 76, 153–178 (2008)CrossRefGoogle Scholar
  4. 4.
    Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)CrossRefGoogle Scholar
  5. 5.
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1(1), 27 (1949)CrossRefGoogle Scholar
  6. 6.
    Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13, 223–227 (1965)CrossRefGoogle Scholar
  7. 7.
    Carlson, B.C.: Computing elliptic integrals by duplication. Numer. Math. 33, 1–16 (1979)CrossRefGoogle Scholar
  8. 8.
    Carlson, B.C.: Numerical computation of real or complex elliptic integrals. Numer. Algorithm. 10(1), 13–26 (1995)CrossRefGoogle Scholar
  9. 9.
    Chiang, C.R.: On Eshelby’s tensor in transversely isotropic materials. Acta Mech. 228(5), 1819–1833 (2017)CrossRefGoogle Scholar
  10. 10.
    Coussy, O.: Poromechanics. Wiley, New York (2004)Google Scholar
  11. 11.
    Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27(5), 699–708 (1991)CrossRefGoogle Scholar
  12. 12.
    Eshelby, J.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Math. Phys. Sci. 241(1226), 376–396 (1957). Proceedings of the Royal Society of London. Series A.CrossRefGoogle Scholar
  13. 13.
    Frih, N., Roberts, J.E., Saada, A.: Modeling fractures as interfaces: a model for Forchheimer fractures. Comput. Geosci. 12(1), 91–104 (2008)CrossRefGoogle Scholar
  14. 14.
    Ganis, B., Girault, V., Mear, M., Singh, G., Wheeler, M.: Modeling fractures in a poro-elastic medium. Oil & Gas Science and Technology–Rev. IFP Energies nouvelles 69(4), 515–528 (2014)CrossRefGoogle Scholar
  15. 15.
    Ghahfarokhi, P.K.: The structured gridding implications for upscaling model discrete fracture networks (DFN) using corrected Oda’s method. J. Pet. Sci. Eng. 153(Complete), 70–80 (2017)CrossRefGoogle Scholar
  16. 16.
    Giese, M., Reimann, T., Liedl, R., Maréchal, J.-C., Sauter, M.: Application of the flow dimension concept for numerical drawdown data analyses in mixed-flow karst systems. Hydrogeol. J. 25(3), 799–811 (2017)CrossRefGoogle Scholar
  17. 17.
    Hashin, Z.: Assessment of the self consistent scheme approximation: conductivity of particulate composites. J. Compos. Mater. 2(3), 284–300 (1968)CrossRefGoogle Scholar
  18. 18.
    Hashin, Z.: Theory of Fiber Reinforced Materials. National Aeronautics and Space Administration, Washington (1972)Google Scholar
  19. 19.
    Hill, C.A.: Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware basin, New Mexico. AAPG Bull. 74, 1685–1694 (1990)Google Scholar
  20. 20.
    Hill, R.: Theory of mechanical properties of fibre-strengthened materials: i. elastic behavior. J. Mech. Phys. Solids 12, 199–212 (1964)CrossRefGoogle Scholar
  21. 21.
    Hill, R.: A self consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213 (1965)CrossRefGoogle Scholar
  22. 22.
    Hornung, U.: Homogenization and Porous Media, volume 6 of Interdisciplinary Applied Mathematics. Springer, Berlin (1997)Google Scholar
  23. 23.
    Jäger, W., Mikelic, A., Neuss, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22(6), 2006–2028 (2001)CrossRefGoogle Scholar
  24. 24.
    Kaufmann, G.: Modelling karst aquifer evolution in fractured, porous rocks. J. Hydrol. 543, 796–807 (2016)CrossRefGoogle Scholar
  25. 25.
    Klimchouk, A.: Hypogene speleogenesis: hydrogeological and morphogenetic perspective. NCKRI Special Paper 1, 1 (2007)Google Scholar
  26. 26.
    Klimchouk, A., Tymokhina, E., Amelichev, G.: Speleogenetic effects of interaction between deeply derived fracture-conduit and intrastratal matrix flow in hypogene karst settings 41, 35–55 (2012)Google Scholar
  27. 27.
    Levy, T., Sanchez-Palencia, E.: On boundary conditions for fluid flow in porous media. Int. J. Eng. Sci. 13(11), 923–940 (1975)CrossRefGoogle Scholar
  28. 28.
    List, F., Kumar, K.: Rigorous upscaling of unsaturated flow in fractured porous media (2018)Google Scholar
  29. 29.
    List, F., Kumar, K.: Upscaling of unsaturated flow in fractured porous media (2018)Google Scholar
  30. 30.
    Loucks, R.G.: Paleocave carbonate reservoirs; origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bull. 83(11), 1795–1834 (1999)Google Scholar
  31. 31.
    Loucks, R.G.: A review of coalesced, collapsed-paleocave systems and associated suprastratal deformation. Time in KARST, pp. 121–132 (2007)Google Scholar
  32. 32.
    Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)CrossRefGoogle Scholar
  33. 33.
    Mura, T.: Micromechanics of defects in solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)CrossRefGoogle Scholar
  34. 34.
    Oda, M.: Permeability tensor for discontinuous rock masses. Géotechnique 35(4), 483–495 (1985)CrossRefGoogle Scholar
  35. 35.
    Palmer, A.N.: Origin and morphology of limestone caves. Geol. Soc. Am. Bull. 103, 1–21 (1991)CrossRefGoogle Scholar
  36. 36.
    Parnell, W., Calvo-Jurado, C.: On the computation of the Hashin-Shtrikman bounds for transversely isotropic two-phase linear elastic fibre-reinforced composites. J. Eng. Math. 95(1), 295–323 (2015)CrossRefGoogle Scholar
  37. 37.
    Popov, P., Efendiev, Y., Qin, G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. comput. Phys. 6(1), 162–184 (2009)CrossRefGoogle Scholar
  38. 38.
    Saevik, P.N., Berre, I., Jakobsen, M., Lien, M.: A 3D computational study of effective medium methods applied to fractured media. Transport Porous Media 100, 115–142 (2013)CrossRefGoogle Scholar
  39. 39.
    Sutera, P.S., Skalak, R.: The history of Poiseuille’s law 25, 1–20, 11 (2003)Google Scholar
  40. 40.
    Torquato, S.: Random heterogeneous materials: microstructure and macroscopic properties, vol. 16. Springer, New York (2002). Interdisciplinary applied mathematicsCrossRefGoogle Scholar
  41. 41.
    Withers, P.J.: The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium and its relevance to composite materials. Philos. Mag. A 59, 759–781 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratório Nacional de Computação CientíficaPetrópolisBrazil
  2. 2.PETROBRASRio de JaneiroBrazil

Personalised recommendations