Advertisement

Computational Geosciences

, Volume 23, Issue 6, pp 1293–1316 | Cite as

Unstructured grid adaptation for multiscale finite volume method

  • Zahra MehrdoostEmail author
Original Paper
  • 50 Downloads

Abstract

The multiscale finite volume (MSFV) method produces non-monotone solutions in the presence of highly heterogeneous and channelized permeability fields, or in media with impermeable barriers. The accuracy of the MSFV method can be significantly improved by generating adapted coarse grids according to the fine-scale permeability field. This paper presents efficient algorithms for generating adaptive unstructured primal and dual coarse grids based on permeability features to efficiently improve the MSFV results. The primal coarse grid is generated based on a multilevel tabu search algorithm and its boundaries are adapted to reduced non-physical coarse-scale transmissibilities. Adaptive dual coarse grid is generated based on Dijkstra’s routing algorithm. The performance of the proposed algorithms is assessed for challenging test cases with highly heterogeneous and channelized permeability fields as well as impermeable shale layers. Numerical results show that permeability-adapted coarse grids significantly improve the accuracy of the MSFV method for simulation of multiphase flow in highly heterogeneous porous media.

Keywords

Multiscale finite volume Unstructured grids Adaptive grid generation Multiphase flow Porous media 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)CrossRefGoogle Scholar
  2. 2.
    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Theory and Applications. Springer New York, New York, NY (2009)Google Scholar
  3. 3.
    Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6, 453–481 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, Z.M., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2003)CrossRefGoogle Scholar
  5. 5.
    Aarnes, J.E., Kippe, V., Lie, K.A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv Water Res. 28(3), 257–271 (2005)CrossRefGoogle Scholar
  6. 6.
    Aarnes, J.E., Efendiev, Y.: An adaptive multiscale method for simulation of fluid flow in heterogeneous porous media. Multiscale Model. Simul. 5, 918–939 (2006)CrossRefGoogle Scholar
  7. 7.
    Aarnes, J.E., Efendiev, Y., Jiang, L.: Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul. 7, 655–676 (2008)CrossRefGoogle Scholar
  8. 8.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Multiscale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)CrossRefGoogle Scholar
  9. 9.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J. Comput. Phys. 217(2), 627–641 (2006)CrossRefGoogle Scholar
  10. 10.
    Lunati, I., Jenny, P.: Multiscale finite-volume method for compressible multiphase flow in porous media. J. Comput. Phys. 216(2), 616–636 (2006)CrossRefGoogle Scholar
  11. 11.
    Lee, S.H., Wolfsteiner, C., Tchelepi, H.A.: Multiscale finite-volume formulation for multiphase flow in porous media: black oil formulation of compressible, three-phase flow with gravity. Comput. Geosci. 12(3), 351–366 (2008)CrossRefGoogle Scholar
  12. 12.
    Lunati, I., Jenny, P.: Multiscale finite-volume method for density-driven flow in porous media. Comput. Geosci. 12(3), 337–350 (2008)CrossRefGoogle Scholar
  13. 13.
    Hesse, M.A., Mallison, B.T., Tchelepi, H.A.: Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul. 7, 934–962 (2008)CrossRefGoogle Scholar
  14. 14.
    Zhou, H., Tchelepi, H.A.: Operator-based multiscale method for compressible flow. SPE J. 13, 267–273 (2008)CrossRefGoogle Scholar
  15. 15.
    Jenny, P., Lunati, I.: Modeling complex wells with the multi-scale finite-volume method. J. Comput. Phys. 228(3), 687–702 (2009)CrossRefGoogle Scholar
  16. 16.
    Lunati, I., Lee, S.H.: An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model Simul. 8(1), 96–109 (2009)CrossRefGoogle Scholar
  17. 17.
    Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227, 8604–8621 (2008)CrossRefGoogle Scholar
  18. 18.
    Hajibeygi, H., Jenny, P.: Multiscale finite-volume method for parabolic problems arising from compressible multiphase flow in porous media. J. Comput. Phys. 228, 5129–5147 (2009)CrossRefGoogle Scholar
  19. 19.
    Lunati, I., Tyagi, M., Lee, S.H.: An iterative multiscale finite volume algorithm converging to the exact solution. J. Comput. Phys. 230, 1849–1864 (2011)CrossRefGoogle Scholar
  20. 20.
    Hajibeygi, H., Jenny, P.: Adaptive iterative multiscale finite volume method. J. Comput. Phys. 230, 628–643 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhou, H., Tchelepi, H.A.: Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models. SPE J. 17, 523–539 (2012)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Hajibeygi, H., Tchelepi, H.A.: Algebraic multiscale solver for flow in heterogeneous porous media. J. Comput. Phys. 259, 284–303 (2014)CrossRefGoogle Scholar
  23. 23.
    Moyner, O., Lie, K.A.: The multiscale finite volume method on unstructured grids. SPE J. 19, 816–831 (2014)CrossRefGoogle Scholar
  24. 24.
    Cortinovis, D., Jenny, P.: Iterative Galerkin-enriched multiscale finite-volume method. J. Comput. Phys. 277, 248–267 (2014)CrossRefGoogle Scholar
  25. 25.
    Cortinovis, D., Jenny, P.: Zonal multiscale finite-volume framework. J. Comput. Phys. 337, 84–97 (2017)CrossRefGoogle Scholar
  26. 26.
    Moyner, O., Lie, K.A.: A multiscale restriction-smoothed basis method for high contrast porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 (2016)CrossRefGoogle Scholar
  27. 27.
    Bosma, S., Hajibeygi, H., Tene, M., Tchelepi, H.A.: Multiscale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM). J. Comput. Phys. 351, 145–164 (2017).  https://doi.org/10.1016/j.jcp.2017.09.032 CrossRefGoogle Scholar
  28. 28.
    J. Wallis, H.A. Tchelepi, Apparatus, method and system for improved reservoir simulation using an algebraic cascading class linear solver, U.S. Patent No.7684967, 2010Google Scholar
  29. 29.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distributed Comput. 48, 96–129 (1998)CrossRefGoogle Scholar
  30. 30.
    Walshaw, C., Cross, M.: JOSTLE: parallel multilevel graph-partitioning software – an overview. In: Magoules, F. (ed.) Mesh Partitioning Techniques and Domain Decomposition Techniques, pp. 27–58. Civil-Comp Ltd., Kippen, Stirlingshire, Scotland (2007)Google Scholar
  31. 31.
    Chevalier, C., Pellegrini, F.: PT-SCOTCH: a tool for efficient parallel graph ordering. Parallel Comput. 34(6–8), 318–331 (2008)CrossRefGoogle Scholar
  32. 32.
    Giotis, A.P., Giannakoglou, K.C.: An unstructured grid partitioning method based on genetic algorithms. Adv. Eng. Softw. 29(2), 129–138 (1998)CrossRefGoogle Scholar
  33. 33.
    Korosec, P., Silc, J., Robic, B.: Solving the mesh-partitioning problem with an ant-colony algorithm. Parallel Comput. 30(5/6), 785–801 (2004)CrossRefGoogle Scholar
  34. 34.
    Liu, P., Wang, C.: A bubble-inspired algorithm for finite element mesh partitioning. Int. J. Numer. Meth. Engng. 93(7), 770–794 (2013)CrossRefGoogle Scholar
  35. 35.
    Walshaw, C., Cross, M.: Mesh partitioning: a multilevel balancing and refinement algorithm. SIAM J. Sci. Comput. 22, 63–80 (2000)CrossRefGoogle Scholar
  36. 36.
    B. Hendrickson, R. Leland, A multilevel algorithm for partitioning graphs. Proceedings of the 1995 ACM/IEEE conference on supercomputing, New York: 1995Google Scholar
  37. 37.
    Glover, F., Laguna, M.: Tabu Search. Boston, Kluwer Academic Publishers (1997)CrossRefGoogle Scholar
  38. 38.
    Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evaluat. Eng. 4(4), 308–317 (2001)CrossRefGoogle Scholar
  39. 39.
    Wang, Y., Hajibeygi, H., Tchelepi, H.A.: Monotone multiscale finite volume method. Comput. Geosci. 20, 509–524 (2016)CrossRefGoogle Scholar
  40. 40.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Ahvaz BranchIslamic Azad UniversityAhvazIran

Personalised recommendations