Advertisement

Benchmarking of reactive transport codes for 2D simulations with mineral dissolution–precipitation reactions and feedback on transport parameters

  • J. PoonoosamyEmail author
  • C. Wanner
  • P. Alt Epping
  • J. F. Águila
  • J. Samper
  • L. Montenegro
  • M. Xie
  • D. Su
  • K. U. Mayer
  • U. Mäder
  • L. R. Van Loon
  • G. Kosakowski
Original Paper

Abstract

Porosity changes due to mineral dissolution–precipitation reactions in porous media and the resulting impact on transport parameters influence the evolution of natural geological environments or engineered underground barrier systems. In the absence of long-term experimental studies, reactive transport codes are used to evaluate the long-term evolution of engineered barrier systems and waste disposal in the deep underground. Examples for such problems are the long-term fate of CO2 in saline aquifers and mineral transformations that cause porosity changes at clay–concrete interfaces. For porosity clogging under a diffusive transport regime and for simple reaction networks, the accuracy of numerical codes can be verified against analytical solutions. For clogging problems with more complex chemical interactions and transport processes, numerical benchmarks are more suitable to assess model performance, the influence of thermodynamic data, and sensitivity to the reacting mineral phases. Such studies increase confidence in numerical model descriptions of more complex, engineered barrier systems. We propose a reactive transport benchmark, considering the advective–diffusive transport of solutes; the effect of liquid-phase density on liquid flow and advective transport; kinetically controlled dissolution–precipitation reactions causing porosity, permeability, and diffusivity changes; and the formation of a solid solution. We present and analyze the results of five participating reactive transport codes (i.e., CORE2D, MIN3P-THCm, OpenGeoSys-GEM, PFLOTRAN, and TOUGHREACT). In all cases, good agreement of the results was obtained.

Keywords

Benchmarking Density-driven flow Solid solution Clogging Barium sulfate Strontium sulfate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Dr. Dmitrii Kulik, Dr. Eric Sonnenthal, and Dr. Victor Vinograd for their useful discussion. We thank the comments, corrections, and suggestions of the two anonymous reviewers who contributed to the improvement of the paper.

Funding Information

The first author gratefully acknowledges Nagra for funding her PhD thesis during most of the work presented in the manuscript was conducted. The contribution from the University of A Coruña was funded by the Spanish Ministry of Economy and Competitiveness (Grant number CGL2016-78281) with support from the FEDER funds. Jesús Fernández enjoyed a research contract from the FPI Program of the Spanish Ministry of Economy and Competitiveness.

Supplementary material

10596_2018_9793_MOESM1_ESM.docx (142 kb)
(DOC 142 KB)
10596_2018_9793_MOESM2_ESM.docx (1.7 mb)
(DOC 1.67 MB)
10596_2018_9793_MOESM3_ESM.docx (456 kb)
(DOC 455 KB)

References

  1. 1.
    Alt-Epping, P., Diamond, L. W., Häring, M. O., Ladner, F., Meier, D. B.: Prediction of water-rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well. Appl. Geochem. 38, 121–133 (2013)CrossRefGoogle Scholar
  2. 2.
    Alt-Epping, P., Waber, H. N., Diamond, L. W., Eichinger, L.: Reactive transport modeling of the geothermal system at Bad Blumau, Austria: implications of the combined extraction of heat and CO2. Geothermics 45, 18–30 (2013)CrossRefGoogle Scholar
  3. 3.
    Wanner, C., Peiffer, L., Sonnenthal, E. L., Spycher, N., Iovenitti, J., Kennedy, B. M.: Reactive transport modeling of the Dixie Valley geothermal area: insights on flow and geothermometry. Geothermics 51, 130–141 (2014)CrossRefGoogle Scholar
  4. 4.
    Diamond, L. W., Alt-epping, P.: Predictive modelling of mineral scaling, corrosion and the performance of solute geothermometers in a granitoid-hosted, enhanced geothermal system. Appl. Geochem. 51, 216–228 (2014)CrossRefGoogle Scholar
  5. 5.
    De Windt, L., Pellegrini, D., van der Lee, J.: Coupled modeling of cement/claystone interactions and radionuclide migration. J. Contam. Hydrol. 68(3-4), 165–182 (2004)CrossRefGoogle Scholar
  6. 6.
    Gaucher, E. C., Blanc, P.: Cement/clay interaction—a review: experiments, natural analogues, and modelling. Waste Manag. 26(7), 776–788 (2006)CrossRefGoogle Scholar
  7. 7.
    De Windt, L., Badredinne, R., Lagneau, V.: Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios. J. Hazard. Mater. 139(3), 529–536 (2007)CrossRefGoogle Scholar
  8. 8.
    Kosakowski, G., Berner, U.: The evolution of clay rock/cement interfaces in a cementitious repository for low and intermediate level radioactive waste. Phys. Chem. Earth A/B/C 64, 65–86 (2013)CrossRefGoogle Scholar
  9. 9.
    Berner, U., Kulik, D. A., Kosakowski, G.: Geochemical impact of a low-pH cement liner on the near field of a repository for spent fuel and high-level radioactive waste. Phys. Chem. Earth 46-56, 64 (2013)Google Scholar
  10. 10.
    Gaus, I, Azaroual, M, Czernichowski-Lauriol, I: Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem. Geol. 217(3-4), 319–337 (2005)CrossRefGoogle Scholar
  11. 11.
    Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., Aubigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S. E., Jin, M., Krug, S., Labregere, D., Beni, A. N., Pawar, R. J., Sbai, A., Thomas, S. G., Trenty, L., Wei, L.: A benchmark study problems related to CO2 storage in geologic formations. Computat. Geosci. 13(4), 409–434 (2009)CrossRefGoogle Scholar
  12. 12.
    Bildstein, O., Kervévan, C., Lagneau, V., Delaplace, P., Crédoz, A., Audigane, P., Perfetti, E., Jacquemet, N., Jullien, M.: Integrative modeling of caprock integrity in the context of CO2 storage: evolution of transport and geochemical properties and impact on performance and safety assessment. Oil Gas Sci. Technol. IFP 65(3), 485–502 (2010)CrossRefGoogle Scholar
  13. 13.
    Wanner, C., Eggenberger, U., Mäder, U.: A chromate-contaminated site in southern Switzerland—part 2: reactive transport modeling to optimize remediation options. Appl. Geochem. 27(3), 655–662 (2012)CrossRefGoogle Scholar
  14. 14.
    Jamieson-Hanes, J. H., Amos, R. T., Blowes, D. W.: Reactive transport modeling of chromium isotope fractionation during cr(IV) reduction. Environ. Sci. Technol. 46(24), 13311–13316 (2012)CrossRefGoogle Scholar
  15. 15.
    Wanner, C., Sonnenthal, E. L.: Assessing the control on the effective kinetic Cr isotope fractionation factor: a reactive transport modeling approach. Chem. Geol. 337-338, 88–98 (2013)CrossRefGoogle Scholar
  16. 16.
    Lagneau, V., van der Lee, J.: Operator-splitting-based reactive transport models in strong feedback of porosity change: the contribution of analytical solutions for accuracy validation and estimator improvement. J. Contam. Hydrol. 112(1-4), 118–129 (2010)CrossRefGoogle Scholar
  17. 17.
    Hayek, M., Kosakowski, G., Churakov, S.: Exact analytical solutions for a diffusion problem coupled with a precipitation-dissolution reaction and feedback of porosity change. Water Resour Res. 47, W07545 (2011)CrossRefGoogle Scholar
  18. 18.
    Hayek, M., Kosakowski, G., Jakob, A., Churakov, S. V.: A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes. Water Resour. Res. 48, W03525 (2012)CrossRefGoogle Scholar
  19. 19.
    van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29(3), 265–275 (2003)CrossRefGoogle Scholar
  20. 20.
    Lagneau, V.: Influence Des Processus Géochimiques Sur Le Transport En Milieu Poreux: Application Au Colmatage De BarriéRes De Confinement Potentielles Dans Un Stockage En Formation GéOlogique. PhD Thesis, Ecole des Mines de Paris (2000)Google Scholar
  21. 21.
    Tartakovsky, A. M., Redden, G., Lichtner, P. C., Scheibe, T. D., Meakin, P.: Mixing-induced precipitation: experimental study and multiscale numerical analysis. Water Resour. Res. 44, W06S04 (2008)CrossRefGoogle Scholar
  22. 22.
    Katz, G. E., Berkowitz, B., Guadagnini, A., Saaltink, M. W.: Experimental and modeling investigation of multicomponent reactive transport in porous media. J. Contam. Hydrol. 120-121, 27–44 (2011)CrossRefGoogle Scholar
  23. 23.
    Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., Šimu̇nek, J., Spycher, N. F., Yabusaki, S. B., Yeh, G. T.: Reactive transport codes for subsurface environmental simulation. Computat. Geosci. 19, 445–478 (2015)CrossRefGoogle Scholar
  24. 24.
    Steefel, C. I., Yabusaki, S. B., Mayer, K. U.: Reactive transport benchmarks for subsurface environmental simulation. Computat. Geosci. 19, 439–443 (2015)CrossRefGoogle Scholar
  25. 25.
    Xie, M., Mayer, K. U., Claret, F., Alt-Epping, P., Jacques, D., Steefel, C., Chiaberge, C., Šimůnek, J.: Implementation and evaluation of permeability-porosity and tortuosity-porosity relationships linked to mineral dissolution-precipitation. Computat. Geosci. 19, 655–671 (2015)CrossRefGoogle Scholar
  26. 26.
    Cochepin, B., Trotignon, L., Bildstein, O., Steefel, C. I., Lagneau, V., van der Lee, J.: Approaches to modelling coupled flow and reaction in a 2D cementation experiment. Adv. Water Resour. 31(12), 1540–1551 (2008)CrossRefGoogle Scholar
  27. 27.
    Poonoosamy, J., Kosakowski, G., Van Loon, L. R., Mäder, U.: Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: experiment and modelling. J. Contam. Hydrol. 177-178, 1–17 (2015)CrossRefGoogle Scholar
  28. 28.
    Poonoosamy, J., Curti, E., Kosakowski, G., Grolimund, D., Van Loon, L. R., Mäder, U.: Barite precipitation following celestite dissolution in a porous medium: a SEM/BSE and μ-XRD/XRF study. Geochim. Cosmochim. Acta 182, 131–144 (2016)CrossRefGoogle Scholar
  29. 29.
    Prasianakis, N.I., Curti, E., Kosakowski, G., Poonoosamy, J., Churakov, S.V.: Deciphering pore-level precipitation mechanisms. Sci. Rep. 7, 13765 (2017)CrossRefGoogle Scholar
  30. 30.
    Samper, J., Xu, T., Yang, C.: A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Computat. Geosci. 13, 301–316 (2009)CrossRefGoogle Scholar
  31. 31.
    Samper, J., Yang, C., Zheng, L., Montenegro, L., Xu, T., Dai, Z., Zhang, G., Lu, C, Moreira, S: CORE2D V4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes. In: Zhang F., Yeh G.T, Parker C., Shi X. (eds.) Chapter 7 of the Electronic Book Groundwater Reactive Transport Models, pp. 161–186. Bentham Science, ISBN 978-1-60805-029-1 (2011)Google Scholar
  32. 32.
    Samper, J., Lu, C., Montenegro, L.: Reactive transport model of interactions of corrosion products and bentonite. Phys. Chem. Earth 33, S306–S316 (2008)CrossRefGoogle Scholar
  33. 33.
    Yang, C, Samper, J., Molinero, J.: Inverse microbial and geochemical reactive transport models in porous media. Phys. Chem. Earth 33(12-13), 1026–1034 (2008)CrossRefGoogle Scholar
  34. 34.
    Zheng, L., Samper, J.: Coupled THMC model of FEBEX mock-up test. Phys. Chem. Earth 33, 486–498 (2008)CrossRefGoogle Scholar
  35. 35.
    Zheng, L., Samper, J., Montenegro, L., Fernández, A. M.: A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite. J. Hydrol. 386, 80–94 (2010)CrossRefGoogle Scholar
  36. 36.
    Zheng, L., Samper, J., Montenegro, L.: A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis. J. Contam. Hydrol. 126, 45–60 (2011)CrossRefGoogle Scholar
  37. 37.
    Samper, J., Mon, A., Montenegro, L.: A revisited thermal, hydrodynamic, chemical and mechanical model of compacted bentonite for the entire duration of the FEBEX in situ test. Applied Clay Sciences,  https://doi.org/10.1016/j.clay.2018.02.019 (2018)CrossRefGoogle Scholar
  38. 38.
    Samper, J., Zheng, L., Montenegro, L., Fernández, A. M., Rivas, P.: Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test. Appl. Geochem. 23(5), 1186–1201 (2008)CrossRefGoogle Scholar
  39. 39.
    Samper, J., Naves, A., Montenegro, L., Mon, A.: Reactive transport modelling of the long-term interactions of corrosion products and compacted bentonite in a HLW repository in granite: uncertainties and relevance for performance assessment. Appl. Geochem. 67, 42–51 (2016)CrossRefGoogle Scholar
  40. 40.
    Mon, A, Samper, J, Montenegro, L, Naves, A, Fernández, J: Long-term nonisothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay. J Cont. Hydrol. 197, 1–16 (2017)CrossRefGoogle Scholar
  41. 41.
    Mayer, K. U., Frind, E. O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38(9), 1174 (2002).  https://doi.org/10.1029/2001WR000862  https://doi.org/10.1029/2001WR000862 CrossRefGoogle Scholar
  42. 42.
    Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F., Chudnenko, K. V., Berner, U.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3k numerical kernel for coupled simulation codes. Computat. Geosci. 17(1), 1–24 (2013)Google Scholar
  43. 43.
    Shao, H., Dmytrieva, S. V., Kolditz, O., Kulik, D. A., Pfingsten, W., Kosakowski, G.: Modeling reactive transport in non-ideal aqueous–solid solution system. Appl. Geochem. 24(7), 1287–1300 (2009)CrossRefGoogle Scholar
  44. 44.
    Kosakowski, G., Watanabe, N.: Opengeosys-gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media. Phys. Chem. Earth 70-71, 138–149 (2014)CrossRefGoogle Scholar
  45. 45.
    Wagner, T., Kulik, D. A., Hingerl, F. F., Dmytrieva, S. V.: GEM-Selektor geochemical modeling package: TSolMod C+ + class library and data interface for multicomponent phase models. Can. Mineral. 50, 1173–1195 (2012)CrossRefGoogle Scholar
  46. 46.
    Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J., Frederick, J.M.: PFLOTRAN user manual, release 1.1, http://www.documentation.pflotran.org (2017)
  47. 47.
    Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37(6), 763–774 (2011)CrossRefGoogle Scholar
  48. 48.
    Pruess, K., Oldenburg, C. M., Moridis, G.: TOUGH2 User’s Guide, Version 2.0. Lawrence Berkeley National Laboratory Report LBNL-29400, Berkeley, California (1999)Google Scholar
  49. 49.
    Batzle, M., Wang, Z.: Seismic properties of pore fluids. Geophysics 57(11), 1396–1408 (1992)CrossRefGoogle Scholar
  50. 50.
    Henderson, R. D., Day-Lewis, F. D., Abarca, E., Harvey, C. F., Karam, H. N., Liu, L., Lane, J. W. Jr: Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA. Hydrogeol. J. 18, 173–185 (2010)CrossRefGoogle Scholar
  51. 51.
    Frind, E. O.: Simulation of long term transient density dependent transport in groundwater. Adv. Water Resour. 5, 73–98 (1982)CrossRefGoogle Scholar
  52. 52.
    Voss, C. I.: SUTRA—A Finite-element Simulation Model for Saturated-unsaturated, Fluid-density-dependent Ground-water Flow with Energy Transport or Chemically-reactive Single-species Solute Transport, vol. 409. U.S. Geological Survey Water-Resources Investigations Report 84–4369 (1984)Google Scholar
  53. 53.
    Kharaka, Y., Gunter, W., Aggarwal, P., Perkins, E., Debraal, J.: SOLMINEQ. 88: A Computer Program for Geochemical Modeling of Water-rock Interactions U.S. Geol. Surv. Water Resour. Invest. Rep. 88–4227 (1988)Google Scholar
  54. 54.
    Guo, W., Langevin, C.: User’s Guide to SEAWAT: A Computer Program for Simulation of Three-dimensional Variable Density Ground-water Flow. U.S. Geologigical Survey Water-Resources Investigations Report 88–4227. https://pubs.usgs.gov/wri/1988/4227/report.pdf (1988) (2002)
  55. 55.
    Simpson, M. J., Clement, T. P.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 40, W01504 (2004).  https://doi.org/10.1029/2003WR002199 CrossRefGoogle Scholar
  56. 56.
    Kemp, N. P., Thomas, D. C., Atkinson, G., Atkinson, B. L.: Density modeling for brines as a function of composition, temperature and pressure. SPE Prod. Eng. 4, 394–400 (1989)CrossRefGoogle Scholar
  57. 57.
    Monnin, C.: Density calculation and concentration scale conversions for natural waters. Comput. Geosci. 20 (10), 1435–1445 (1994)CrossRefGoogle Scholar
  58. 58.
    Bea, S. A., Carrera, J., Ayora, C., Batlle, F.: Pitzer algorithm: efficient implementation of Pitzer equations in geochemical and reactive transport models. Comput. Geosci. 36, 526–538 (2012)CrossRefGoogle Scholar
  59. 59.
    Bea, S. A., Mayer, K. U., MacQuarrie, K. T. B.: Modelling Reactive Transport in Sedimentary Rock Environments—Phase II, MIN3P-THCm code enhancements and illustrative simulations for a glaciation scenario Technical report: NWMO TR-2011-13 (2011)Google Scholar
  60. 60.
    Archie, G.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 146, 54–62 (1942)CrossRefGoogle Scholar
  61. 61.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover Publications Inc., New York (1972)Google Scholar
  62. 62.
    Helgeson, H. C., Kirkham, D. H., Flowers, G. C.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 C and 5 KB. Am. J. Sci. 281, 1249–1516 (1981)CrossRefGoogle Scholar
  63. 63.
    Johnson, J. W., Oelkers, E. H., Helgeson, H. C.: SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C. Computat. Geosci. 18(7), 899–947 (1992)CrossRefGoogle Scholar
  64. 64.
    Pitzer, K. S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)CrossRefGoogle Scholar
  65. 65.
    Pitzer, K. S.: Ion interaction approach: theory and data correlation. In: Pitzer, K. S. (ed.) Activity Coefficients in Electrolyte Solutions. CRC, Boca Raton (1991)Google Scholar
  66. 66.
    Palandri, J. L., Kharaka, Y. K.: A Compilation of Rate Parameters of Water Mineral Interaction Kinetics for Application to Geochemical Modelling. US Geological Survey, Menlo Park (2004)Google Scholar
  67. 67.
    Dove, P. M., Czank, C. A.: Crystal chemical controls on the dissolution kinetics of the isostructural sulfates: celestite, anglesite, and barite. Geochim. Cosmochim. Acta 56(10), 4147–4156 (1995)Google Scholar
  68. 68.
    Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management: a State-Of-The Art Report Chemical Thermodynamics. In: Mompean, F.J., Illemassene, M., Perrone, J. (eds.) OECD, vol. 10. Issy-les-Moulineaux (2007)Google Scholar
  69. 69.
    Wanner, C., Druhan, J. L., Amos, R. T., Alt-Epping, P., Steefel, C. I.: Benchmarking the simulation of Cr isotope fractionation. Computat. Geosci. 19, 497–521 (2015)CrossRefGoogle Scholar
  70. 70.
    Hummel, W., Berner, U., Curti, E., Pearson, F. J., Thoenen, T.: Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal, Parkland (2002)Google Scholar
  71. 71.
    Shock, E. L., Helgeson, H. C., Sverjensky, D. A.: Calculation of the thermodynamic and properties of aqueous species at high pressures temperatures: standard partial molal properties inorganic neutral species. Geochim. Cosmochim. Acta 53(9), 2157–2183 (1989)CrossRefGoogle Scholar
  72. 72.
    Sverjensky, D. A., Shock, E. L., Helgeson, H. C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 C and 5 kb. Geochim. Cosmochim. Acta 61, 1359–1412 (1997)CrossRefGoogle Scholar
  73. 73.
    Shock, E., Sassani, D. C., Willis, M., Sverjensky, D. A.: Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61(5), 907–950 (1997)CrossRefGoogle Scholar
  74. 74.
    Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., Nuttall, R. L.: The NBS tables of chemical and thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(2), 392 (1982)Google Scholar
  75. 75.
    Kelley, K. K.: Contributions to the Data in Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacities and Entropy Data for the Elements and Inorganic Compounds. U.S. Bureau of Mines Bulletin 584, USA (1960)Google Scholar
  76. 76.
    Helgeson, H. C., Delany, J., Nesbitt, H. W., Bird, D. K.: Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 278A, 229 (1978)Google Scholar
  77. 77.
    Chagneau, A., Claret, F., Enzmann, F., Kersten, M., Heck, S., Madé, B., Schäfer, T.: Mineral precipitation-induced porosity reduction and its effect on transport parameters in diffusioncontrolled porous media. Geochem. Trans. 16, 13 (2015)CrossRefGoogle Scholar
  78. 78.
    Noiriel, C., Luquot, L., Madé, B., Raimbault, L., Gouze, P., Van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265(1-2), 160–170 (2009)CrossRefGoogle Scholar
  79. 79.
    Marty, N. C., Tournassat, C., Burmol, A., Giffaut, E., Gaucher, E.: Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. J. Hydrol. 364, 58–72 (2009)CrossRefGoogle Scholar
  80. 80.
    Prieto, M.: Thermodynamics of solid solution-aqueous solution systems. Rev. Mineral. Geochem. 70, 47–85 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • J. Poonoosamy
    • 1
    • 5
    Email author
  • C. Wanner
    • 2
  • P. Alt Epping
    • 2
  • J. F. Águila
    • 3
  • J. Samper
    • 3
  • L. Montenegro
    • 3
  • M. Xie
    • 4
  • D. Su
    • 4
  • K. U. Mayer
    • 4
  • U. Mäder
    • 2
  • L. R. Van Loon
    • 1
  • G. Kosakowski
    • 1
  1. 1.Laboratory for Waste ManagementPaul Scherrer Institut (PSI)VilligenSwitzerland
  2. 2.Rock Water Interaction, Institute of Geological SciencesUniversity of BernBernSwitzerland
  3. 3.Centro de Investigaciones Científicas Avanzadas (CICA), E.T.S. Ingenieros de Caminos, Canales y Puertos, Campus de ElviñaA CoruñaSpain
  4. 4.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColombiaVancouverCanada
  5. 5.Forschungszentrum Jülich GmbHIEK-6: Institute of Nuclear Waste Management and Reactor SafetyJülichGermany

Personalised recommendations