Advertisement

Computational Geosciences

, Volume 23, Issue 1, pp 107–126 | Cite as

A heterogeneous multiscale MPFA method for single-phase flows in porous media with inertial effects

  • Sergey AlyaevEmail author
  • Eirik Keilegavlen
  • Jan M. Nordbotten
Open Access
Original Paper
  • 188 Downloads

Abstract

Upscaling of flow from pore to Darcy scale is a long-standing research field within flow in porous media. It is well known that non-linearities can occur in near-well regions and high-porosity or fractured media. At the same time, the upscaled non-linear effects associated with high flow rates are hard to quantify a priori with single-scale models. Advances in pore-scale imaging combined with increased computational have made flow simulations in small pore-scale domain feasible, but computations on domains larger than at most a few centimeters are still elusive. In this work, we present a multiscale simulation framework that automatically adapts to non-linear effects as they arise. We formulate a control volume heterogeneous multiscale method (CVHMM) by coupling of a Darcy-scale control volume method with a constitutive relation that is captured based on the fine-scale physics. While the CVHMM formulation works with arbitrary upscaled laws, we emphasize its ability to be applied in fully discrete multiscale context, in particular when a finite element solver is used for solving Navier-Stokes equations on the fine-scale pore geometry. Previous versions of CVHMM are consistent only when the coarse grid is aligned with the upscaled permeability. Herein, we generalize CVHMM by introducing a new coarse solver, thus significantly improving the applicability of the method. The presented method is applied to study flow in near-well regions, as well as media with fractures and irregular grain shapes. The examples show that the method successfully copes with general grids and pore geometries and handles flows with varying degree of non-linearities even outside the domain of applicability of classical upscaled models. In terms of computational efficiency, the method seamlessly localizes computations to regions where non-linear effects are important.

Keywords

Pore scale Numerical upscaling Hybrid multiscale method Near-well flow 

Notes

Acknowledgments

SA acknowledges the Research Council of Norway and the industry partners; ConocoPhillips Skandinavia AS, BP Norge AS, Det Norske Oljeselskap AS, Eni Norge AS, Maersk Oil Norway AS, DONG Energy A/S, Denmark, Statoil Petroleum AS, ENGIE E&P NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS of The National IOR Centre of Norway for support. SA also thanks Anna Kvashchuk, Trine Solberg Mykkeltvedt and Kundan Kumar for helpful discussions during the preparation of the manuscript. The authors thank the reviewers for constructive criticism that helped to improve and better frame the paper.

References

  1. 1.
    Aavatsmark, I.: Interpretation of a two-point flux stencil for skew parallelogram grids. Comput. Geosci. 11(3), 199–206 (2007).  https://doi.org/10.1007/s10596-007-9042-1 CrossRefGoogle Scholar
  2. 2.
    Aavatsmark, I., Barkve, T., Bøe, O., Mannseth, T.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19(5), 1700–1716 (1998).  https://doi.org/10.1137/S1064827595293582 CrossRefGoogle Scholar
  3. 3.
    Aavatsmark, I., Eigestad, G.T., Mallison, B.T., Nordbotten, J.M.: A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24, 1329–1360 (2008).  https://doi.org/10.1002/num.20320. http://onlinelibrary.wiley.com/doi/10.1002/num.20320/abstract CrossRefGoogle Scholar
  4. 4.
    Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. Mult. Scales Probl. Biomath. Mech. Phys. Numer. 31, 133–181 (2009)Google Scholar
  5. 5.
    Abdulle, A.: A priori and a posteriori error analysis for numerical homogenization: a unified framework. In: Damlamian, A., Miara, B., Li, T. (eds.) Multiscale Problems, vol. 16, pp. 280–305. World Scientific (2011).  https://doi.org/10.1142/8267. http://anmc.epfl.ch/Pdf/abdulle_cam_final_pr.pdf. http://www.worldscientific.com/doi/abs/10.1142/9789814366892_0009
  6. 6.
    Abdulle, A., Budác, O.: An adaptive finite element heterogeneous multiscale method for stokes flow in porous media. Multiscale Model. Simul. 13(1), 256–290 (2015).  https://doi.org/10.1137/130950136 CrossRefGoogle Scholar
  7. 7.
    Abdulle, A., Budáč, O.: A reduced basis finite element heterogeneous multiscale method for stokes flow in porous media. Comput. Methods Appl. Mech. Eng. 307, 1–31 (2016).  https://doi.org/10.1016/j.cma.2016.03.016 CrossRefGoogle Scholar
  8. 8.
    Alyaev, S., Keilegavlen, E., Nordbotten, J.: Multiscale simulation of non-Darcy flows. In: CMWR, pp. 1–8. http://cmwr2012.cee.illinois.edu/Papers/SpecialSessions/HybridMultiscaleModelsinSubsurfaceFlowandTransport/Alyaev.Seregy.pdf (2012)
  9. 9.
    Alyaev, S., Keilegavlen, E., Nordbotten, J.M.J.: Analysis of control volume heterogeneous multiscale methods for single phase flow in porous media. MMS 12(1), 335–363 (2014).  https://doi.org/10.1137/120885541 CrossRefGoogle Scholar
  10. 10.
    Andrȧ, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: Computing effective properties. Comput. Geosci. 50, 33–43 (2013).  https://doi.org/10.1016/j.cageo.2012.09.008 CrossRefGoogle Scholar
  11. 11.
    Andrȧ, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-Part I: Imaging and segmentation. Comput. Geosci. 50, 25–32 (2013).  https://doi.org/10.1016/j.cageo.2012.09.005 CrossRefGoogle Scholar
  12. 12.
    Aulisa, E., Ibragimov, A., Valko, P., Walton, J.: Mathematical framework of the well productivity index for fast Forchheimer (non-Darcy) flow in porous media. Math. Models Methods Appl. Sci. 19(8), 1241–1275 (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.5461&rep=rep1&type=pdf
  13. 13.
    Balhoff, M., Mikeliċ, A., Wheeler, M.F.: Polynomial filtration laws for low Reynolds number flows through porous media. Transp. Porous Media 81(1), 35–60 (2010).  https://doi.org/10.1007/s11242-009-9388-z CrossRefGoogle Scholar
  14. 14.
    Balhoff, M., Wheeler, M.: A predictive pore-scale model for non-Darcy flow in porous media. SPE J. 14, 9 (2009).  https://doi.org/10.2118/110838-PA. http://www.onepetro.org/mslib/servlet/onepetro preview?id=SPE-110838-PA CrossRefGoogle Scholar
  15. 15.
    Balhoff, M.T., Thomas, S.G., Wheeler, M.F.: Mortar coupling and upscaling of pore-scale models. Comput. Geosci. 12(1), 15–27 (2008).  https://doi.org/10.1007/s10596-007-9058-6 CrossRefGoogle Scholar
  16. 16.
    Barree, R.D., Conway, M.W.: Beyond beta factors: a complete model for Darcy, Forchheimer, and Trans-Forchheimer flow in porous media. In: Proceedings of SPE Annual Technical Conference and Exhibition, p. 8.  https://doi.org/10.2523/89325-MS (2004)
  17. 17.
    Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8), 861–884 (2002).  https://doi.org/10.1016/S0309-1708(02)00042-8 CrossRefGoogle Scholar
  18. 18.
    Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013).  https://doi.org/10.1016/j.advwatres.2012.03.003 CrossRefGoogle Scholar
  19. 19.
    Chan, S., Elsheikh, A.H.: A machine learning approach for efficient uncertainty quantification using multiscale methods. J. Comput. Phys. 354, 493–511 (2018)CrossRefGoogle Scholar
  20. 20.
    Chen, Z., Lyons, S.L., Qin, G.: Derivation of the Forchheimer Law via Homogenization, pp. 325–335 (2001)Google Scholar
  21. 21.
    Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media I: steady-state single phase flow. Multiscale Model. Simul. 10(2), 515–549 (2012).  https://doi.org/10.1137/110836201 CrossRefGoogle Scholar
  22. 22.
    Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media Ii: single-and two-phase flows. In: Advances in Applied Mathematics, Modeling, and Computational Science, pp. 161–185. Springer (2013)Google Scholar
  23. 23.
    Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Comm. Math. Sci. 1(1), 87–132 (2003)CrossRefGoogle Scholar
  24. 24.
    Ewing, R.E., Lazarov, R.D., Lyons, S.L., Papavassiliou, D.V., Pasciak, J., Qin, G.: Numerical well model for non-Darcy flow through isotropic porous media. Comput. Geosci. 3(3-4), 185–204 (1999).  https://doi.org/10.1023/A:1011543412675. papers2://publication/uuid/94680680-1A1A-4E3C-BDDE-D9182D7F93EC CrossRefGoogle Scholar
  25. 25.
    Faigle, B., Helmig, R., Aavatsmark, I., Flemisch, B.: Efficient multiphysics modelling with adaptive grid refinement using a MPFA method. Comput. Geosci. 26, 625–636 (2014).  https://doi.org/10.1007/s10596-014-9407-1 CrossRefGoogle Scholar
  26. 26.
    Hornung, U.: Homogenization and Porous Media, vol. 6. Springer, Berlin (1997)CrossRefGoogle Scholar
  27. 27.
    Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K.: Currents in Industrial Mathematics. Springer, Berlin (2015).  https://doi.org/10.1007/978-3-662-48258-2 Google Scholar
  28. 28.
    Lao, H.W., Neeman, H.J., Papavassiliou, D.V.: A pore network model for the calculation of non-Darcy flow coefficients in fluid flow through porous media. Chem. Eng. Commun. 191(10), 1285–1322 (2004).  https://doi.org/10.1080/00986440490464200 CrossRefGoogle Scholar
  29. 29.
    Logg, A., Mardal, K., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Berlin (2012).  https://doi.org/10.1007/978-3-642-23099-8 CrossRefGoogle Scholar
  30. 30.
    Macini, P., Mesini, E., Viola, R.: Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Pet. Sci. Eng. 77(3-4), 365–374 (2011).  https://doi.org/10.1016/j.petrol.2011.04.016 CrossRefGoogle Scholar
  31. 31.
    Mattila, K., Puurtinen, T., Hyvȧluoma, J., Surmas, R., Myllys, M., Turpeinen, T., Robertsėn, F., Westerholm, J., Timonen, J.: A prospect for computing in porous materials research: Very large fluid flow simulations. J. Comput. Sci. 12, 62–76 (2016).  https://doi.org/10.1016/j.jocs.2015.11.013 CrossRefGoogle Scholar
  32. 32.
    Mavis, F., Wilsey, E.: A study of the permeability of sand. University of Iowa Studies in Engineering (Bulletin 7), pp. 1–29. http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1007&context=uisie (1936)
  33. 33.
    McClure, J.E., Gray, W.G., Miller, C.T.: beyond anisotropy: examining Non-Darcy flow in asymmetric porous media. Transp. Porous Media 84(2), 535–548 (2010).  https://doi.org/10.1007/s11242-009-9518-7 CrossRefGoogle Scholar
  34. 34.
    Mehmani, Y., Balhoff, M.T.: Bridging from pore to continuum: a hybrid mortar domain decomposition framework for subsurface flow and transport. Multiscale Model. Simul. 12 (2), 667–693 (2014).  https://doi.org/10.1137/13092424X CrossRefGoogle Scholar
  35. 35.
    Narsilio, G.A., Buzzi, O., Fityus, S., Yun, T.S., Smith, D.W.: Upscaling of Navier-Stokes equations in porous media: theoretical, numerical and experimental approach. Comput. Geotech. 36(7), 1200–1206 (2009).  https://doi.org/10.1016/j.compgeo.2009.05.006 CrossRefGoogle Scholar
  36. 36.
    Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229(19), 7456–7476 (2010).  https://doi.org/10.1016/j.jcp.2010.06.028 CrossRefGoogle Scholar
  37. 37.
    Oyewole, E., Garcia, A.P., Heidari, Z.: A new method for assessment of directional permeability and conducting pore network using electric conductance in porous media. In: SPWLA 57th Annual Logging Symposium (2016)Google Scholar
  38. 38.
    Peszynska, M., Trykozko, A.: Pore-to-core simulations of flow with large velocities using continuum models and imaging data. Comput. Geosci. 17(4), 623–645 (2013).  https://doi.org/10.1007/s10596-013-9344-4 CrossRefGoogle Scholar
  39. 39.
    Peszynska, M., Trykozko, A., Sobieski, W.: Forchheimer law in computational and experimental studies of flow through porous media at porescale and mesoscale. Math. Sci. Appl. 32, 463–482 (2010)Google Scholar
  40. 40.
    Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012).  https://doi.org/10.1007/s11242-011-9877-8 CrossRefGoogle Scholar
  41. 41.
    Santillȧn, D., Mosquera, J.C., Cueto-felgueroso, L.: Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories. Phys. Rev. E. 96(5), 1–10 (2017).  https://doi.org/10.1103/PhysRevE.96.053002 CrossRefGoogle Scholar
  42. 42.
    Scheibe, T.D., Perkins, W.A., Richmond, M.C., McKinley, M.I., Romero-Gomez, P.D.J., Oostrom, M., Wietsma, T.W., Serkowski, J.A., Zachara, J.M.: Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resour. Res. 51(2), 1023–1035 (2015).  https://doi.org/10.1002/2014WR015959 CrossRefGoogle Scholar
  43. 43.
    Sheng, Q., Thompson, K.: Dynamic coupling of pore-scale and reservoir-scale models for multiphase flow. Water Resour. Res. 49(9), 5973–5988 (2013).  https://doi.org/10.1002/wrcr.20430 CrossRefGoogle Scholar
  44. 44.
    Skjetne, E., Auriault, J.L.: New insights on steady, non-linear flow in porous media. Eur. J. Mech. - B/Fluids 18(1), 131–145 (1999).  https://doi.org/10.1016/S0997-7546(99)80010-7 CrossRefGoogle Scholar
  45. 45.
    Skjetne, E., Kløv, T., Gudmundsson, J.: Experiments and modeling of high-velocity pressure loss in sandstone fractures. SPE Journal (March):61–70.  https://doi.org/10.2118/69676-PA (2001)
  46. 46.
    Sun, T., Mehmani, Y., Balhoff, M.T.: Hybrid multiscale modeling through direct substitution of pore-scale models into near-well reservoir simulators. Energy Fuels 18(5), 5828–5836 (2012).  https://doi.org/10.1021/ef301003b CrossRefGoogle Scholar
  47. 47.
    Swift, G.W., Kiel, O.G.: The prediction of gas-well performance including the effect of non-Darcy flow. J. Petrol. Tech. 14(07), 791–798 (1962)CrossRefGoogle Scholar
  48. 48.
    Tomin, P., Lunati, I.: Hybrid multiscale finite volume method for two-phase flow in porous media. J. Comput. Phys. 250, 293–307 (2013).  https://doi.org/10.1016/j.jcp.2013.05.019. http://linkinghub.elsevier.com/retrieve/pii/S0021999113003513 CrossRefGoogle Scholar
  49. 49.
    Tomin, P., Lunati, I.: Spatiotemporal adaptive multiphysics simulations of drainage-imbibition cycles. Comput. Geosci. 20(3), 541–554 (2016).  https://doi.org/10.1007/s10596-015-9521-8 CrossRefGoogle Scholar
  50. 50.
    Wang, Y., Li, X., Zheng, B., Zhang, Y.X., Li, G.F., Wu, Y.F.: Experimental study on the non-Darcy flow characteristics of soil-rock mixture. Environ. Earth Sci. 75(9), 756 (2016).  https://doi.org/10.1007/s12665-015-5218-5 CrossRefGoogle Scholar
  51. 51.
    Whitaker, S.: Flow in porous media {II}: the governing equations for immiscible, two-phase flow. Transp. Porous Med. 1, 105–125 (1986)CrossRefGoogle Scholar
  52. 52.
    Whitaker, S.: The forchheimer equation: a theoretical development. Transp. Porous Media 25, 27–61 (1996)CrossRefGoogle Scholar
  53. 53.
    Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013).  https://doi.org/10.1016/j.advwatres.2012.07.018 CrossRefGoogle Scholar
  54. 54.
    Zaretskiy, Y., Geiger, S., Sorbie, K., Fȯrster, M.: Efficient flow and transport simulations in reconstructed 3D pore geometries. Adv. Water Resour. 33(12), 1508–1516 (2010).  https://doi.org/10.1016/j.advwatres.2010.08.008 CrossRefGoogle Scholar
  55. 55.
    Zeng, Z., Grigg, R.: A criterion for non-darcy flow in porous media. Transp. Porous Media 63(1), 57–69 (2006).  https://doi.org/10.1111/j.1439-0523.2006.01169.x CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.NORCE Norwegian Research CentreBergenNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway
  3. 3.Department of Civil and Environmental EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations