Computational Geosciences

, Volume 22, Issue 6, pp 1447–1463 | Cite as

Surrogate-based parameter inference in debris flow model

  • Maria Navarro
  • Olivier P. Le Maître
  • Ibrahim Hoteit
  • David L. George
  • Kyle T. Mandli
  • Omar M. Knio
Original Paper


This work tackles the problem of calibrating the unknown parameters of a debris flow model with the drawback that the information regarding the experimental data treatment and processing is not available. In particular, we focus on the evolution over time of the flow thickness of the debris with dam-break initial conditions. The proposed methodology consists of establishing an approximation of the numerical model using a polynomial chaos expansion that is used in place of the original model, saving computational burden. The values of the parameters are then inferred through a Bayesian approach with a particular focus on inference discrepancies that some of the important features predicted by the model exhibit. We build the model approximation using a preconditioned non-intrusive method and show that a suitable prior parameter distribution is critical to the construction of an accurate surrogate model. The results of the Bayesian inference suggest that utilizing directly the available experimental data could lead to incorrect conclusions, including the over-determination of parameters. To avoid such drawbacks, we propose to base the inference on few significant features extracted from the original data. Our experiments confirm the validity of this approach, and show that it does not lead to significant loss of information. It is further computationally more efficient than the direct approach, and can avoid the construction of an elaborate error model.


Bayesian inference Polynomial chaos expansion Debris flow Uncertainty quantification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

Research reported in this publication was supported by research funding from King Abdullah University of Science and Technology (KAUST).


  1. 1.
    Alexanderian, A., Maître, O.P.L., Najm, H., Iskandarani, M., Knio, O.: Multiscale stochastic preconditioners in non-intrusive spectral projection. J. Sci. Comput. 50(2), 306–340 (2012)CrossRefGoogle Scholar
  2. 2.
    Alexanderian, A., Rizzi, F., Rathinam, M., Maître, O.L., Knio, O.: Preconditioned Bayesian regression for stochastic chemical kinetics. J. Sci. Comput. 58(3), 592–626 (2014)CrossRefGoogle Scholar
  3. 3.
    Anderson, H.L.: Metropolis, Monte Carlo and the MANIAC. Los Alamos Science (1986)Google Scholar
  4. 4.
    Berveiller, M.: Stochastic Finite Elements: Intrusive and Non Intrusive Methods for Reliability Analysis. Ph.D. Thesis, Universite Blaise Pascal, Clermont-Ferrand (2005)Google Scholar
  5. 5.
    Bouchut, F., Fernández-Nieto, E., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects. J. Fluid Mech. 801, 166–221 (2016)CrossRefGoogle Scholar
  6. 6.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  7. 7.
    Caflisch, R.E.: Monte Carlo and quasi-monte carlo methods. Acta Numerica 7, 1–49 (1998)CrossRefGoogle Scholar
  8. 8.
    Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947)CrossRefGoogle Scholar
  9. 9.
    Canuto, C., Hussaini, M.Y., Quateroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domain. Springer, Berlin (2006)Google Scholar
  10. 10.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28(2), 545–572 (1991)CrossRefGoogle Scholar
  11. 11.
    Crestaux, T., Le maître, O.P., Martinez, J.M.: Polynomial chaos expansion of sensitivity analysis. J. Rel. Eng. Syst. Saf. 94(7), 1161–1182 (2009)CrossRefGoogle Scholar
  12. 12.
    Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian Data Analysis, 3rd edn. Chapman and hall/CRC, London (2013)Google Scholar
  13. 13.
  14. 14.
    George, D.L., Iverson, R.M.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests. Proc. R. Soc. 470, 20130820 (2014). CrossRefGoogle Scholar
  15. 15.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)Google Scholar
  17. 17.
    Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7(2), 223–242 (2001)CrossRefGoogle Scholar
  18. 18.
    Hampton, J., Doostan, A.: Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression. Comput. Methods Appl. Mech. Eng. 290, 73 – 97 (2015). CrossRefGoogle Scholar
  19. 19.
    Host, G.: Simulated Annealing - Wiley StatsRef: Statistics Reference Online. Wiley, New York (2014)Google Scholar
  20. 20.
    Isukapalli, S.: Uncertainty Analysis of Transport-Transformation Models. Ph.D. thesis, The State University of New Jersey, New Jersey (1999)Google Scholar
  21. 21.
    Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)CrossRefGoogle Scholar
  22. 22.
    Iverson, R.M.: Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. 110 (F2), F02,015 (2005)CrossRefGoogle Scholar
  23. 23.
    Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A 470, 20130819 (2014). CrossRefGoogle Scholar
  24. 24.
    Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., Brien, D.L.: Acute sensitivity of landslide rates to initial soil porosity. Science 290(5491), 513–516 (2000)CrossRefGoogle Scholar
  25. 25.
    Jansen, M.J.W.: Analysis of variance designs for model output. Comput. Phys. Commun. 117, 35–43 (1999)CrossRefGoogle Scholar
  26. 26.
    Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. B 63, 425–464 (2001)CrossRefGoogle Scholar
  27. 27.
    Kowalski, J., McElwaine, J.: Shallow two-component gravity-driven flows with vertical variation. J. Fluid Mech. 714, 434–462 (2013)CrossRefGoogle Scholar
  28. 28.
    Langenhove, J.V., Lucor, D., Belme, A.: Robust uncertainty quantification using preconditioned least-squares polynomial approximations with l1-regularizations. Int. J. Uncertain. Quantif. 6, 57–77 (2016)CrossRefGoogle Scholar
  29. 29.
    Langseth, J.O., LeVeque, R.J.: A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165, 126–166 (2000)CrossRefGoogle Scholar
  30. 30.
    Lawson, C.L.: Contribution to the Theory of Linear Least Maximum Approximations. Ph.D. thesis, University of California (1961)Google Scholar
  31. 31.
    Le Maître, O.P., Knio, O.M.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010)CrossRefGoogle Scholar
  32. 32.
    Le Maître, O.P., Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: A stochastic projection method for fluid flow. II. Random process. J. Comput. Phys. 181, 9–44 (2002)CrossRefGoogle Scholar
  33. 33.
    LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)CrossRefGoogle Scholar
  34. 34.
    LeVeque, R.J.: Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131, 327–353 (1997)CrossRefGoogle Scholar
  35. 35.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). CrossRefGoogle Scholar
  36. 36.
    Loh, W.L.: On latin hypercube sampling. Ann. Stat. 24(5), 2058–2080 (1996)CrossRefGoogle Scholar
  37. 37.
    Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Providence (2001)CrossRefGoogle Scholar
  38. 38.
    Mai, C.V., Sudret, B.: Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping. SIAM/ASA J. Uncertain. Quantif. 5(1), 540–571 (2017)CrossRefGoogle Scholar
  39. 39.
    Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2(3), e68 (2016). CrossRefGoogle Scholar
  40. 40.
    Marzouk, Y.M., Najm, H.N.: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228(6), 1862–1902 (2009)CrossRefGoogle Scholar
  41. 41.
    Marzouk, Y.M., Najm, H.N., Rahn, L.A.: Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224(2), 560–586 (2007)CrossRefGoogle Scholar
  42. 42.
    Matlab optimization toolbox: The MathWorks, Natick, MA, USA (2016)Google Scholar
  43. 43.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)CrossRefGoogle Scholar
  44. 44.
    Polak, E.: Optimization: Algorithms and Consistent Approximations. Applied Mathematical Sciences, p. 9780387949710. Springer-Verlag, Berlin (1997)CrossRefGoogle Scholar
  45. 45.
    Iverson, R.M. , Logan, M., LaHusen, R.G., Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005 (2010). 29 pCrossRefGoogle Scholar
  46. 46.
    Reagan, M.T., Najm, H.N., Ghanem, R.G., Knio, O.M.: Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection. Combust. Flame 132, 545–555 (2003)CrossRefGoogle Scholar
  47. 47.
    Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc. Lond. A269, 500–527 (1962)CrossRefGoogle Scholar
  48. 48.
    Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145(2), 280–297 (2002)CrossRefGoogle Scholar
  49. 49.
    Scales, J.A., Gersztenkorn, A.: Robust methods in inverse theory. Inverse Probl. 4(4), 1071 (1988)CrossRefGoogle Scholar
  50. 50.
    Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw Hill, New York (1968)Google Scholar
  51. 51.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986)CrossRefGoogle Scholar
  52. 52.
    Sobol’, I.: Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Exp. 1, 407–414 (1993)Google Scholar
  53. 53.
    Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)CrossRefGoogle Scholar
  54. 54.
    Tarantola, A.: Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (2005)Google Scholar
  55. 55.
    Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maria Navarro
    • 1
  • Olivier P. Le Maître
    • 2
  • Ibrahim Hoteit
    • 3
  • David L. George
    • 4
  • Kyle T. Mandli
    • 5
  • Omar M. Knio
    • 1
  1. 1.Computer, Electrical and Mathematical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.LIMSI-CNRSOrsay CedexFrance
  3. 3.Physical Sciences and Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  4. 4.U.S. Geological SurveyVancouverUSA
  5. 5.Department of Applied Physics and Applied MathematicsColumbia University in the City of New YorkNew YorkUSA

Personalised recommendations